Solve for x
x=\frac{1}{8}=0.125
x=8
Graph
Share
Copied to clipboard
a+b=-65 ab=8\times 8=64
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,-64 -2,-32 -4,-16 -8,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Calculate the sum for each pair.
a=-64 b=-1
The solution is the pair that gives sum -65.
\left(8x^{2}-64x\right)+\left(-x+8\right)
Rewrite 8x^{2}-65x+8 as \left(8x^{2}-64x\right)+\left(-x+8\right).
8x\left(x-8\right)-\left(x-8\right)
Factor out 8x in the first and -1 in the second group.
\left(x-8\right)\left(8x-1\right)
Factor out common term x-8 by using distributive property.
x=8 x=\frac{1}{8}
To find equation solutions, solve x-8=0 and 8x-1=0.
8x^{2}-65x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-65\right)±\sqrt{\left(-65\right)^{2}-4\times 8\times 8}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -65 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-65\right)±\sqrt{4225-4\times 8\times 8}}{2\times 8}
Square -65.
x=\frac{-\left(-65\right)±\sqrt{4225-32\times 8}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-65\right)±\sqrt{4225-256}}{2\times 8}
Multiply -32 times 8.
x=\frac{-\left(-65\right)±\sqrt{3969}}{2\times 8}
Add 4225 to -256.
x=\frac{-\left(-65\right)±63}{2\times 8}
Take the square root of 3969.
x=\frac{65±63}{2\times 8}
The opposite of -65 is 65.
x=\frac{65±63}{16}
Multiply 2 times 8.
x=\frac{128}{16}
Now solve the equation x=\frac{65±63}{16} when ± is plus. Add 65 to 63.
x=8
Divide 128 by 16.
x=\frac{2}{16}
Now solve the equation x=\frac{65±63}{16} when ± is minus. Subtract 63 from 65.
x=\frac{1}{8}
Reduce the fraction \frac{2}{16} to lowest terms by extracting and canceling out 2.
x=8 x=\frac{1}{8}
The equation is now solved.
8x^{2}-65x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-65x+8-8=-8
Subtract 8 from both sides of the equation.
8x^{2}-65x=-8
Subtracting 8 from itself leaves 0.
\frac{8x^{2}-65x}{8}=-\frac{8}{8}
Divide both sides by 8.
x^{2}-\frac{65}{8}x=-\frac{8}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{65}{8}x=-1
Divide -8 by 8.
x^{2}-\frac{65}{8}x+\left(-\frac{65}{16}\right)^{2}=-1+\left(-\frac{65}{16}\right)^{2}
Divide -\frac{65}{8}, the coefficient of the x term, by 2 to get -\frac{65}{16}. Then add the square of -\frac{65}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{65}{8}x+\frac{4225}{256}=-1+\frac{4225}{256}
Square -\frac{65}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{65}{8}x+\frac{4225}{256}=\frac{3969}{256}
Add -1 to \frac{4225}{256}.
\left(x-\frac{65}{16}\right)^{2}=\frac{3969}{256}
Factor x^{2}-\frac{65}{8}x+\frac{4225}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{65}{16}\right)^{2}}=\sqrt{\frac{3969}{256}}
Take the square root of both sides of the equation.
x-\frac{65}{16}=\frac{63}{16} x-\frac{65}{16}=-\frac{63}{16}
Simplify.
x=8 x=\frac{1}{8}
Add \frac{65}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}