Solve for x
x=\frac{3}{4}=0.75
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
a+b=-42 ab=8\times 27=216
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx+27. To find a and b, set up a system to be solved.
-1,-216 -2,-108 -3,-72 -4,-54 -6,-36 -8,-27 -9,-24 -12,-18
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 216.
-1-216=-217 -2-108=-110 -3-72=-75 -4-54=-58 -6-36=-42 -8-27=-35 -9-24=-33 -12-18=-30
Calculate the sum for each pair.
a=-36 b=-6
The solution is the pair that gives sum -42.
\left(8x^{2}-36x\right)+\left(-6x+27\right)
Rewrite 8x^{2}-42x+27 as \left(8x^{2}-36x\right)+\left(-6x+27\right).
4x\left(2x-9\right)-3\left(2x-9\right)
Factor out 4x in the first and -3 in the second group.
\left(2x-9\right)\left(4x-3\right)
Factor out common term 2x-9 by using distributive property.
x=\frac{9}{2} x=\frac{3}{4}
To find equation solutions, solve 2x-9=0 and 4x-3=0.
8x^{2}-42x+27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 8\times 27}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -42 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 8\times 27}}{2\times 8}
Square -42.
x=\frac{-\left(-42\right)±\sqrt{1764-32\times 27}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-42\right)±\sqrt{1764-864}}{2\times 8}
Multiply -32 times 27.
x=\frac{-\left(-42\right)±\sqrt{900}}{2\times 8}
Add 1764 to -864.
x=\frac{-\left(-42\right)±30}{2\times 8}
Take the square root of 900.
x=\frac{42±30}{2\times 8}
The opposite of -42 is 42.
x=\frac{42±30}{16}
Multiply 2 times 8.
x=\frac{72}{16}
Now solve the equation x=\frac{42±30}{16} when ± is plus. Add 42 to 30.
x=\frac{9}{2}
Reduce the fraction \frac{72}{16} to lowest terms by extracting and canceling out 8.
x=\frac{12}{16}
Now solve the equation x=\frac{42±30}{16} when ± is minus. Subtract 30 from 42.
x=\frac{3}{4}
Reduce the fraction \frac{12}{16} to lowest terms by extracting and canceling out 4.
x=\frac{9}{2} x=\frac{3}{4}
The equation is now solved.
8x^{2}-42x+27=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-42x+27-27=-27
Subtract 27 from both sides of the equation.
8x^{2}-42x=-27
Subtracting 27 from itself leaves 0.
\frac{8x^{2}-42x}{8}=-\frac{27}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{42}{8}\right)x=-\frac{27}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{21}{4}x=-\frac{27}{8}
Reduce the fraction \frac{-42}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=-\frac{27}{8}+\left(-\frac{21}{8}\right)^{2}
Divide -\frac{21}{4}, the coefficient of the x term, by 2 to get -\frac{21}{8}. Then add the square of -\frac{21}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{21}{4}x+\frac{441}{64}=-\frac{27}{8}+\frac{441}{64}
Square -\frac{21}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{225}{64}
Add -\frac{27}{8} to \frac{441}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{21}{8}\right)^{2}=\frac{225}{64}
Factor x^{2}-\frac{21}{4}x+\frac{441}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Take the square root of both sides of the equation.
x-\frac{21}{8}=\frac{15}{8} x-\frac{21}{8}=-\frac{15}{8}
Simplify.
x=\frac{9}{2} x=\frac{3}{4}
Add \frac{21}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}