Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(8x-2\right)=0
Factor out x.
x=0 x=\frac{1}{4}
To find equation solutions, solve x=0 and 8x-2=0.
8x^{2}-2x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±2}{2\times 8}
Take the square root of \left(-2\right)^{2}.
x=\frac{2±2}{2\times 8}
The opposite of -2 is 2.
x=\frac{2±2}{16}
Multiply 2 times 8.
x=\frac{4}{16}
Now solve the equation x=\frac{2±2}{16} when ± is plus. Add 2 to 2.
x=\frac{1}{4}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
x=\frac{0}{16}
Now solve the equation x=\frac{2±2}{16} when ± is minus. Subtract 2 from 2.
x=0
Divide 0 by 16.
x=\frac{1}{4} x=0
The equation is now solved.
8x^{2}-2x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}-2x}{8}=\frac{0}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{2}{8}\right)x=\frac{0}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{1}{4}x=\frac{0}{8}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{4}x=0
Divide 0 by 8.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{8}\right)^{2}=\frac{1}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{1}{8} x-\frac{1}{8}=-\frac{1}{8}
Simplify.
x=\frac{1}{4} x=0
Add \frac{1}{8} to both sides of the equation.