Solve for x
x=\frac{3\sqrt{2}}{4}+\frac{3}{2}\approx 2.560660172
x=-\frac{3\sqrt{2}}{4}+\frac{3}{2}\approx 0.439339828
Graph
Share
Copied to clipboard
8x^{2}-24x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 8\times 9}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -24 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 8\times 9}}{2\times 8}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-32\times 9}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-24\right)±\sqrt{576-288}}{2\times 8}
Multiply -32 times 9.
x=\frac{-\left(-24\right)±\sqrt{288}}{2\times 8}
Add 576 to -288.
x=\frac{-\left(-24\right)±12\sqrt{2}}{2\times 8}
Take the square root of 288.
x=\frac{24±12\sqrt{2}}{2\times 8}
The opposite of -24 is 24.
x=\frac{24±12\sqrt{2}}{16}
Multiply 2 times 8.
x=\frac{12\sqrt{2}+24}{16}
Now solve the equation x=\frac{24±12\sqrt{2}}{16} when ± is plus. Add 24 to 12\sqrt{2}.
x=\frac{3\sqrt{2}}{4}+\frac{3}{2}
Divide 24+12\sqrt{2} by 16.
x=\frac{24-12\sqrt{2}}{16}
Now solve the equation x=\frac{24±12\sqrt{2}}{16} when ± is minus. Subtract 12\sqrt{2} from 24.
x=-\frac{3\sqrt{2}}{4}+\frac{3}{2}
Divide 24-12\sqrt{2} by 16.
x=\frac{3\sqrt{2}}{4}+\frac{3}{2} x=-\frac{3\sqrt{2}}{4}+\frac{3}{2}
The equation is now solved.
8x^{2}-24x+9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-24x+9-9=-9
Subtract 9 from both sides of the equation.
8x^{2}-24x=-9
Subtracting 9 from itself leaves 0.
\frac{8x^{2}-24x}{8}=-\frac{9}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{24}{8}\right)x=-\frac{9}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-3x=-\frac{9}{8}
Divide -24 by 8.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{8}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{9}{8}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{9}{8}
Add -\frac{9}{8} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{8}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{8}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{3\sqrt{2}}{4} x-\frac{3}{2}=-\frac{3\sqrt{2}}{4}
Simplify.
x=\frac{3\sqrt{2}}{4}+\frac{3}{2} x=-\frac{3\sqrt{2}}{4}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}