Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-12x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 8\left(-16\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 8\left(-16\right)}}{2\times 8}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-32\left(-16\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-12\right)±\sqrt{144+512}}{2\times 8}
Multiply -32 times -16.
x=\frac{-\left(-12\right)±\sqrt{656}}{2\times 8}
Add 144 to 512.
x=\frac{-\left(-12\right)±4\sqrt{41}}{2\times 8}
Take the square root of 656.
x=\frac{12±4\sqrt{41}}{2\times 8}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{41}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{41}+12}{16}
Now solve the equation x=\frac{12±4\sqrt{41}}{16} when ± is plus. Add 12 to 4\sqrt{41}.
x=\frac{\sqrt{41}+3}{4}
Divide 12+4\sqrt{41} by 16.
x=\frac{12-4\sqrt{41}}{16}
Now solve the equation x=\frac{12±4\sqrt{41}}{16} when ± is minus. Subtract 4\sqrt{41} from 12.
x=\frac{3-\sqrt{41}}{4}
Divide 12-4\sqrt{41} by 16.
8x^{2}-12x-16=8\left(x-\frac{\sqrt{41}+3}{4}\right)\left(x-\frac{3-\sqrt{41}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+\sqrt{41}}{4} for x_{1} and \frac{3-\sqrt{41}}{4} for x_{2}.