Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+2x=566
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}+2x-566=566-566
Subtract 566 from both sides of the equation.
8x^{2}+2x-566=0
Subtracting 566 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\times 8\left(-566\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 2 for b, and -566 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 8\left(-566\right)}}{2\times 8}
Square 2.
x=\frac{-2±\sqrt{4-32\left(-566\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-2±\sqrt{4+18112}}{2\times 8}
Multiply -32 times -566.
x=\frac{-2±\sqrt{18116}}{2\times 8}
Add 4 to 18112.
x=\frac{-2±2\sqrt{4529}}{2\times 8}
Take the square root of 18116.
x=\frac{-2±2\sqrt{4529}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{4529}-2}{16}
Now solve the equation x=\frac{-2±2\sqrt{4529}}{16} when ± is plus. Add -2 to 2\sqrt{4529}.
x=\frac{\sqrt{4529}-1}{8}
Divide -2+2\sqrt{4529} by 16.
x=\frac{-2\sqrt{4529}-2}{16}
Now solve the equation x=\frac{-2±2\sqrt{4529}}{16} when ± is minus. Subtract 2\sqrt{4529} from -2.
x=\frac{-\sqrt{4529}-1}{8}
Divide -2-2\sqrt{4529} by 16.
x=\frac{\sqrt{4529}-1}{8} x=\frac{-\sqrt{4529}-1}{8}
The equation is now solved.
8x^{2}+2x=566
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}+2x}{8}=\frac{566}{8}
Divide both sides by 8.
x^{2}+\frac{2}{8}x=\frac{566}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{1}{4}x=\frac{566}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{4}x=\frac{283}{4}
Reduce the fraction \frac{566}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{283}{4}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{283}{4}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{4529}{64}
Add \frac{283}{4} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=\frac{4529}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{4529}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{4529}}{8} x+\frac{1}{8}=-\frac{\sqrt{4529}}{8}
Simplify.
x=\frac{\sqrt{4529}-1}{8} x=\frac{-\sqrt{4529}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.