Solve for x
x = \frac{\sqrt{10321} - 9}{8} \approx 11.574040318
x=\frac{-\sqrt{10321}-9}{8}\approx -13.824040318
Graph
Share
Copied to clipboard
8x^{2}+18x-8=1272
Multiply 636 and 2 to get 1272.
8x^{2}+18x-8-1272=0
Subtract 1272 from both sides.
8x^{2}+18x-1280=0
Subtract 1272 from -8 to get -1280.
x=\frac{-18±\sqrt{18^{2}-4\times 8\left(-1280\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 18 for b, and -1280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 8\left(-1280\right)}}{2\times 8}
Square 18.
x=\frac{-18±\sqrt{324-32\left(-1280\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-18±\sqrt{324+40960}}{2\times 8}
Multiply -32 times -1280.
x=\frac{-18±\sqrt{41284}}{2\times 8}
Add 324 to 40960.
x=\frac{-18±2\sqrt{10321}}{2\times 8}
Take the square root of 41284.
x=\frac{-18±2\sqrt{10321}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{10321}-18}{16}
Now solve the equation x=\frac{-18±2\sqrt{10321}}{16} when ± is plus. Add -18 to 2\sqrt{10321}.
x=\frac{\sqrt{10321}-9}{8}
Divide -18+2\sqrt{10321} by 16.
x=\frac{-2\sqrt{10321}-18}{16}
Now solve the equation x=\frac{-18±2\sqrt{10321}}{16} when ± is minus. Subtract 2\sqrt{10321} from -18.
x=\frac{-\sqrt{10321}-9}{8}
Divide -18-2\sqrt{10321} by 16.
x=\frac{\sqrt{10321}-9}{8} x=\frac{-\sqrt{10321}-9}{8}
The equation is now solved.
8x^{2}+18x-8=1272
Multiply 636 and 2 to get 1272.
8x^{2}+18x=1272+8
Add 8 to both sides.
8x^{2}+18x=1280
Add 1272 and 8 to get 1280.
\frac{8x^{2}+18x}{8}=\frac{1280}{8}
Divide both sides by 8.
x^{2}+\frac{18}{8}x=\frac{1280}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{9}{4}x=\frac{1280}{8}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9}{4}x=160
Divide 1280 by 8.
x^{2}+\frac{9}{4}x+\left(\frac{9}{8}\right)^{2}=160+\left(\frac{9}{8}\right)^{2}
Divide \frac{9}{4}, the coefficient of the x term, by 2 to get \frac{9}{8}. Then add the square of \frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{4}x+\frac{81}{64}=160+\frac{81}{64}
Square \frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{4}x+\frac{81}{64}=\frac{10321}{64}
Add 160 to \frac{81}{64}.
\left(x+\frac{9}{8}\right)^{2}=\frac{10321}{64}
Factor x^{2}+\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{8}\right)^{2}}=\sqrt{\frac{10321}{64}}
Take the square root of both sides of the equation.
x+\frac{9}{8}=\frac{\sqrt{10321}}{8} x+\frac{9}{8}=-\frac{\sqrt{10321}}{8}
Simplify.
x=\frac{\sqrt{10321}-9}{8} x=\frac{-\sqrt{10321}-9}{8}
Subtract \frac{9}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}