Solve for x
x = \frac{43}{28} = 1\frac{15}{28} \approx 1.535714286
Graph
Share
Copied to clipboard
\frac{8\times 4}{7}-16x=-20
Express 8\times \frac{4}{7} as a single fraction.
\frac{32}{7}-16x=-20
Multiply 8 and 4 to get 32.
-16x=-20-\frac{32}{7}
Subtract \frac{32}{7} from both sides.
-16x=-\frac{140}{7}-\frac{32}{7}
Convert -20 to fraction -\frac{140}{7}.
-16x=\frac{-140-32}{7}
Since -\frac{140}{7} and \frac{32}{7} have the same denominator, subtract them by subtracting their numerators.
-16x=-\frac{172}{7}
Subtract 32 from -140 to get -172.
x=\frac{-\frac{172}{7}}{-16}
Divide both sides by -16.
x=\frac{-172}{7\left(-16\right)}
Express \frac{-\frac{172}{7}}{-16} as a single fraction.
x=\frac{-172}{-112}
Multiply 7 and -16 to get -112.
x=\frac{43}{28}
Reduce the fraction \frac{-172}{-112} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}