Evaluate
\frac{62}{15}\approx 4.133333333
Factor
\frac{2 \cdot 31}{3 \cdot 5} = 4\frac{2}{15} = 4.133333333333334
Share
Copied to clipboard
8\left(\frac{4}{12}+\frac{3}{12}-\frac{2}{5}+\frac{1}{3}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
8\left(\frac{4+3}{12}-\frac{2}{5}+\frac{1}{3}\right)
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
8\left(\frac{7}{12}-\frac{2}{5}+\frac{1}{3}\right)
Add 4 and 3 to get 7.
8\left(\frac{35}{60}-\frac{24}{60}+\frac{1}{3}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{7}{12} and \frac{2}{5} to fractions with denominator 60.
8\left(\frac{35-24}{60}+\frac{1}{3}\right)
Since \frac{35}{60} and \frac{24}{60} have the same denominator, subtract them by subtracting their numerators.
8\left(\frac{11}{60}+\frac{1}{3}\right)
Subtract 24 from 35 to get 11.
8\left(\frac{11}{60}+\frac{20}{60}\right)
Least common multiple of 60 and 3 is 60. Convert \frac{11}{60} and \frac{1}{3} to fractions with denominator 60.
8\times \frac{11+20}{60}
Since \frac{11}{60} and \frac{20}{60} have the same denominator, add them by adding their numerators.
8\times \frac{31}{60}
Add 11 and 20 to get 31.
\frac{8\times 31}{60}
Express 8\times \frac{31}{60} as a single fraction.
\frac{248}{60}
Multiply 8 and 31 to get 248.
\frac{62}{15}
Reduce the fraction \frac{248}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}