Solve for x
x=\frac{26}{\theta -1}
\theta \neq 1
Solve for θ
\theta =\frac{x+26}{x}
x\neq 0
Graph
Share
Copied to clipboard
8\times 18+36+18\theta x=648+18x
Multiply both sides of the equation by 18.
144+36+18\theta x=648+18x
Multiply 8 and 18 to get 144.
180+18\theta x=648+18x
Add 144 and 36 to get 180.
180+18\theta x-18x=648
Subtract 18x from both sides.
18\theta x-18x=648-180
Subtract 180 from both sides.
18\theta x-18x=468
Subtract 180 from 648 to get 468.
\left(18\theta -18\right)x=468
Combine all terms containing x.
\frac{\left(18\theta -18\right)x}{18\theta -18}=\frac{468}{18\theta -18}
Divide both sides by 18\theta -18.
x=\frac{468}{18\theta -18}
Dividing by 18\theta -18 undoes the multiplication by 18\theta -18.
x=\frac{26}{\theta -1}
Divide 468 by 18\theta -18.
8\times 18+36+18\theta x=648+18x
Multiply both sides of the equation by 18.
144+36+18\theta x=648+18x
Multiply 8 and 18 to get 144.
180+18\theta x=648+18x
Add 144 and 36 to get 180.
18\theta x=648+18x-180
Subtract 180 from both sides.
18\theta x=468+18x
Subtract 180 from 648 to get 468.
18x\theta =18x+468
The equation is in standard form.
\frac{18x\theta }{18x}=\frac{18x+468}{18x}
Divide both sides by 18x.
\theta =\frac{18x+468}{18x}
Dividing by 18x undoes the multiplication by 18x.
\theta =\frac{x+26}{x}
Divide 468+18x by 18x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}