Solve for k
k=\frac{4\left(ex-p\right)}{n}
n\neq 0
Solve for n
\left\{\begin{matrix}n=\frac{4\left(ex-p\right)}{k}\text{, }&x\neq \frac{p}{e}\text{ and }k\neq 0\\n\neq 0\text{, }&k=0\text{ and }x=\frac{p}{e}\end{matrix}\right.
Graph
Share
Copied to clipboard
8\left(ex-p\right)=k\times 2n
Multiply both sides of the equation by 2n.
8ex-8p=k\times 2n
Use the distributive property to multiply 8 by ex-p.
k\times 2n=8ex-8p
Swap sides so that all variable terms are on the left hand side.
2nk=8ex-8p
The equation is in standard form.
\frac{2nk}{2n}=\frac{8ex-8p}{2n}
Divide both sides by 2n.
k=\frac{8ex-8p}{2n}
Dividing by 2n undoes the multiplication by 2n.
k=\frac{4\left(ex-p\right)}{n}
Divide 8ex-8p by 2n.
8\left(ex-p\right)=k\times 2n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2n.
8ex-8p=k\times 2n
Use the distributive property to multiply 8 by ex-p.
k\times 2n=8ex-8p
Swap sides so that all variable terms are on the left hand side.
2kn=8ex-8p
The equation is in standard form.
\frac{2kn}{2k}=\frac{8ex-8p}{2k}
Divide both sides by 2k.
n=\frac{8ex-8p}{2k}
Dividing by 2k undoes the multiplication by 2k.
n=\frac{4\left(ex-p\right)}{k}
Divide 8ex-8p by 2k.
n=\frac{4\left(ex-p\right)}{k}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}