Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\alpha \left(8\gamma ^{3}-\delta ^{3}\right)-\beta \left(8\gamma ^{3}-\delta ^{3}\right)
Do the grouping 8\alpha \gamma ^{3}+\beta \delta ^{3}-8\beta \gamma ^{3}-\alpha \delta ^{3}=\left(8\alpha \gamma ^{3}-\alpha \delta ^{3}\right)+\left(-8\beta \gamma ^{3}+\beta \delta ^{3}\right), and factor out \alpha in the first and -\beta in the second group.
\left(8\gamma ^{3}-\delta ^{3}\right)\left(\alpha -\beta \right)
Factor out common term 8\gamma ^{3}-\delta ^{3} by using distributive property.
\left(2\gamma -\delta \right)\left(4\gamma ^{2}+2\gamma \delta +\delta ^{2}\right)
Consider 8\gamma ^{3}-\delta ^{3}. Rewrite 8\gamma ^{3}-\delta ^{3} as \left(2\gamma \right)^{3}-\delta ^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(\alpha -\beta \right)\left(2\gamma -\delta \right)\left(4\gamma ^{2}+2\gamma \delta +\delta ^{2}\right)
Rewrite the complete factored expression.