Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

32768-7z^{2}-1=7
Calculate 8 to the power of 5 and get 32768.
32767-7z^{2}=7
Subtract 1 from 32768 to get 32767.
-7z^{2}=7-32767
Subtract 32767 from both sides.
-7z^{2}=-32760
Subtract 32767 from 7 to get -32760.
z^{2}=\frac{-32760}{-7}
Divide both sides by -7.
z^{2}=4680
Divide -32760 by -7 to get 4680.
z=6\sqrt{130} z=-6\sqrt{130}
Take the square root of both sides of the equation.
32768-7z^{2}-1=7
Calculate 8 to the power of 5 and get 32768.
32767-7z^{2}=7
Subtract 1 from 32768 to get 32767.
32767-7z^{2}-7=0
Subtract 7 from both sides.
32760-7z^{2}=0
Subtract 7 from 32767 to get 32760.
-7z^{2}+32760=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-7\right)\times 32760}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and 32760 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-7\right)\times 32760}}{2\left(-7\right)}
Square 0.
z=\frac{0±\sqrt{28\times 32760}}{2\left(-7\right)}
Multiply -4 times -7.
z=\frac{0±\sqrt{917280}}{2\left(-7\right)}
Multiply 28 times 32760.
z=\frac{0±84\sqrt{130}}{2\left(-7\right)}
Take the square root of 917280.
z=\frac{0±84\sqrt{130}}{-14}
Multiply 2 times -7.
z=-6\sqrt{130}
Now solve the equation z=\frac{0±84\sqrt{130}}{-14} when ± is plus.
z=6\sqrt{130}
Now solve the equation z=\frac{0±84\sqrt{130}}{-14} when ± is minus.
z=-6\sqrt{130} z=6\sqrt{130}
The equation is now solved.