Solve for x
x = -\frac{52}{5} = -10\frac{2}{5} = -10.4
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
Graph
Share
Copied to clipboard
64=\left(4+x\right)^{2}+\left(\frac{3}{4}x+3\right)^{2}
Calculate 8 to the power of 2 and get 64.
64=16+8x+x^{2}+\left(\frac{3}{4}x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
64=16+8x+x^{2}+\frac{9}{16}x^{2}+\frac{9}{2}x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3}{4}x+3\right)^{2}.
64=16+8x+\frac{25}{16}x^{2}+\frac{9}{2}x+9
Combine x^{2} and \frac{9}{16}x^{2} to get \frac{25}{16}x^{2}.
64=16+\frac{25}{2}x+\frac{25}{16}x^{2}+9
Combine 8x and \frac{9}{2}x to get \frac{25}{2}x.
64=25+\frac{25}{2}x+\frac{25}{16}x^{2}
Add 16 and 9 to get 25.
25+\frac{25}{2}x+\frac{25}{16}x^{2}=64
Swap sides so that all variable terms are on the left hand side.
25+\frac{25}{2}x+\frac{25}{16}x^{2}-64=0
Subtract 64 from both sides.
-39+\frac{25}{2}x+\frac{25}{16}x^{2}=0
Subtract 64 from 25 to get -39.
\frac{25}{16}x^{2}+\frac{25}{2}x-39=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{25}{2}±\sqrt{\left(\frac{25}{2}\right)^{2}-4\times \frac{25}{16}\left(-39\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{16} for a, \frac{25}{2} for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{25}{2}±\sqrt{\frac{625}{4}-4\times \frac{25}{16}\left(-39\right)}}{2\times \frac{25}{16}}
Square \frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{25}{2}±\sqrt{\frac{625}{4}-\frac{25}{4}\left(-39\right)}}{2\times \frac{25}{16}}
Multiply -4 times \frac{25}{16}.
x=\frac{-\frac{25}{2}±\sqrt{\frac{625+975}{4}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -39.
x=\frac{-\frac{25}{2}±\sqrt{400}}{2\times \frac{25}{16}}
Add \frac{625}{4} to \frac{975}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{25}{2}±20}{2\times \frac{25}{16}}
Take the square root of 400.
x=\frac{-\frac{25}{2}±20}{\frac{25}{8}}
Multiply 2 times \frac{25}{16}.
x=\frac{\frac{15}{2}}{\frac{25}{8}}
Now solve the equation x=\frac{-\frac{25}{2}±20}{\frac{25}{8}} when ± is plus. Add -\frac{25}{2} to 20.
x=\frac{12}{5}
Divide \frac{15}{2} by \frac{25}{8} by multiplying \frac{15}{2} by the reciprocal of \frac{25}{8}.
x=-\frac{\frac{65}{2}}{\frac{25}{8}}
Now solve the equation x=\frac{-\frac{25}{2}±20}{\frac{25}{8}} when ± is minus. Subtract 20 from -\frac{25}{2}.
x=-\frac{52}{5}
Divide -\frac{65}{2} by \frac{25}{8} by multiplying -\frac{65}{2} by the reciprocal of \frac{25}{8}.
x=\frac{12}{5} x=-\frac{52}{5}
The equation is now solved.
64=\left(4+x\right)^{2}+\left(\frac{3}{4}x+3\right)^{2}
Calculate 8 to the power of 2 and get 64.
64=16+8x+x^{2}+\left(\frac{3}{4}x+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
64=16+8x+x^{2}+\frac{9}{16}x^{2}+\frac{9}{2}x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3}{4}x+3\right)^{2}.
64=16+8x+\frac{25}{16}x^{2}+\frac{9}{2}x+9
Combine x^{2} and \frac{9}{16}x^{2} to get \frac{25}{16}x^{2}.
64=16+\frac{25}{2}x+\frac{25}{16}x^{2}+9
Combine 8x and \frac{9}{2}x to get \frac{25}{2}x.
64=25+\frac{25}{2}x+\frac{25}{16}x^{2}
Add 16 and 9 to get 25.
25+\frac{25}{2}x+\frac{25}{16}x^{2}=64
Swap sides so that all variable terms are on the left hand side.
\frac{25}{2}x+\frac{25}{16}x^{2}=64-25
Subtract 25 from both sides.
\frac{25}{2}x+\frac{25}{16}x^{2}=39
Subtract 25 from 64 to get 39.
\frac{25}{16}x^{2}+\frac{25}{2}x=39
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{25}{16}x^{2}+\frac{25}{2}x}{\frac{25}{16}}=\frac{39}{\frac{25}{16}}
Divide both sides of the equation by \frac{25}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{25}{2}}{\frac{25}{16}}x=\frac{39}{\frac{25}{16}}
Dividing by \frac{25}{16} undoes the multiplication by \frac{25}{16}.
x^{2}+8x=\frac{39}{\frac{25}{16}}
Divide \frac{25}{2} by \frac{25}{16} by multiplying \frac{25}{2} by the reciprocal of \frac{25}{16}.
x^{2}+8x=\frac{624}{25}
Divide 39 by \frac{25}{16} by multiplying 39 by the reciprocal of \frac{25}{16}.
x^{2}+8x+4^{2}=\frac{624}{25}+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=\frac{624}{25}+16
Square 4.
x^{2}+8x+16=\frac{1024}{25}
Add \frac{624}{25} to 16.
\left(x+4\right)^{2}=\frac{1024}{25}
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{1024}{25}}
Take the square root of both sides of the equation.
x+4=\frac{32}{5} x+4=-\frac{32}{5}
Simplify.
x=\frac{12}{5} x=-\frac{52}{5}
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}