Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

64+b^{2}=22^{2}
Calculate 8 to the power of 2 and get 64.
64+b^{2}=484
Calculate 22 to the power of 2 and get 484.
b^{2}=484-64
Subtract 64 from both sides.
b^{2}=420
Subtract 64 from 484 to get 420.
b=2\sqrt{105} b=-2\sqrt{105}
Take the square root of both sides of the equation.
64+b^{2}=22^{2}
Calculate 8 to the power of 2 and get 64.
64+b^{2}=484
Calculate 22 to the power of 2 and get 484.
64+b^{2}-484=0
Subtract 484 from both sides.
-420+b^{2}=0
Subtract 484 from 64 to get -420.
b^{2}-420=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-420\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -420 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-420\right)}}{2}
Square 0.
b=\frac{0±\sqrt{1680}}{2}
Multiply -4 times -420.
b=\frac{0±4\sqrt{105}}{2}
Take the square root of 1680.
b=2\sqrt{105}
Now solve the equation b=\frac{0±4\sqrt{105}}{2} when ± is plus.
b=-2\sqrt{105}
Now solve the equation b=\frac{0±4\sqrt{105}}{2} when ± is minus.
b=2\sqrt{105} b=-2\sqrt{105}
The equation is now solved.