Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
8\left(\frac{1}{2}x-\frac{1}{4}x-\frac{1}{4}\right)-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Use the distributive property to multiply -\frac{1}{4} by x+1.
8\left(\frac{1}{4}x-\frac{1}{4}\right)-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Combine \frac{1}{2}x and -\frac{1}{4}x to get \frac{1}{4}x.
8\times \frac{1}{4}x+8\left(-\frac{1}{4}\right)-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Use the distributive property to multiply 8 by \frac{1}{4}x-\frac{1}{4}.
\frac{8}{4}x+8\left(-\frac{1}{4}\right)-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Multiply 8 and \frac{1}{4} to get \frac{8}{4}.
2x+8\left(-\frac{1}{4}\right)-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Divide 8 by 4 to get 2.
2x+\frac{8\left(-1\right)}{4}-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Express 8\left(-\frac{1}{4}\right) as a single fraction.
2x+\frac{-8}{4}-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Multiply 8 and -1 to get -8.
2x-2-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Divide -8 by 4 to get -2.
2x-\frac{4}{2}-\frac{1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Convert -2 to fraction -\frac{4}{2}.
2x+\frac{-4-1}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Since -\frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
2x-\frac{5}{2}=15\left(\frac{1}{2}-\frac{2}{3}\left(x-\frac{1}{2}\right)\right)+2x
Subtract 1 from -4 to get -5.
2x-\frac{5}{2}=15\left(\frac{1}{2}-\frac{2}{3}x-\frac{2}{3}\left(-\frac{1}{2}\right)\right)+2x
Use the distributive property to multiply -\frac{2}{3} by x-\frac{1}{2}.
2x-\frac{5}{2}=15\left(\frac{1}{2}-\frac{2}{3}x+\frac{-2\left(-1\right)}{3\times 2}\right)+2x
Multiply -\frac{2}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x-\frac{5}{2}=15\left(\frac{1}{2}-\frac{2}{3}x+\frac{2}{6}\right)+2x
Do the multiplications in the fraction \frac{-2\left(-1\right)}{3\times 2}.
2x-\frac{5}{2}=15\left(\frac{1}{2}-\frac{2}{3}x+\frac{1}{3}\right)+2x
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
2x-\frac{5}{2}=15\left(\frac{3}{6}-\frac{2}{3}x+\frac{2}{6}\right)+2x
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
2x-\frac{5}{2}=15\left(\frac{3+2}{6}-\frac{2}{3}x\right)+2x
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
2x-\frac{5}{2}=15\left(\frac{5}{6}-\frac{2}{3}x\right)+2x
Add 3 and 2 to get 5.
2x-\frac{5}{2}=15\times \frac{5}{6}+15\left(-\frac{2}{3}\right)x+2x
Use the distributive property to multiply 15 by \frac{5}{6}-\frac{2}{3}x.
2x-\frac{5}{2}=\frac{15\times 5}{6}+15\left(-\frac{2}{3}\right)x+2x
Express 15\times \frac{5}{6} as a single fraction.
2x-\frac{5}{2}=\frac{75}{6}+15\left(-\frac{2}{3}\right)x+2x
Multiply 15 and 5 to get 75.
2x-\frac{5}{2}=\frac{25}{2}+15\left(-\frac{2}{3}\right)x+2x
Reduce the fraction \frac{75}{6} to lowest terms by extracting and canceling out 3.
2x-\frac{5}{2}=\frac{25}{2}+\frac{15\left(-2\right)}{3}x+2x
Express 15\left(-\frac{2}{3}\right) as a single fraction.
2x-\frac{5}{2}=\frac{25}{2}+\frac{-30}{3}x+2x
Multiply 15 and -2 to get -30.
2x-\frac{5}{2}=\frac{25}{2}-10x+2x
Divide -30 by 3 to get -10.
2x-\frac{5}{2}=\frac{25}{2}-8x
Combine -10x and 2x to get -8x.
2x-\frac{5}{2}+8x=\frac{25}{2}
Add 8x to both sides.
10x-\frac{5}{2}=\frac{25}{2}
Combine 2x and 8x to get 10x.
10x=\frac{25}{2}+\frac{5}{2}
Add \frac{5}{2} to both sides.
10x=\frac{25+5}{2}
Since \frac{25}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
10x=\frac{30}{2}
Add 25 and 5 to get 30.
10x=15
Divide 30 by 2 to get 15.
x=\frac{15}{10}
Divide both sides by 10.
x=\frac{3}{2}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}