Solve for x
x=\frac{6\sqrt{10}}{5}+3\approx 6.794733192
x=-\frac{6\sqrt{10}}{5}+3\approx -0.794733192
Graph
Share
Copied to clipboard
-5x^{2}+30x+35=8
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+30x+35-8=0
Subtract 8 from both sides.
-5x^{2}+30x+27=0
Subtract 8 from 35 to get 27.
x=\frac{-30±\sqrt{30^{2}-4\left(-5\right)\times 27}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 30 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-5\right)\times 27}}{2\left(-5\right)}
Square 30.
x=\frac{-30±\sqrt{900+20\times 27}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-30±\sqrt{900+540}}{2\left(-5\right)}
Multiply 20 times 27.
x=\frac{-30±\sqrt{1440}}{2\left(-5\right)}
Add 900 to 540.
x=\frac{-30±12\sqrt{10}}{2\left(-5\right)}
Take the square root of 1440.
x=\frac{-30±12\sqrt{10}}{-10}
Multiply 2 times -5.
x=\frac{12\sqrt{10}-30}{-10}
Now solve the equation x=\frac{-30±12\sqrt{10}}{-10} when ± is plus. Add -30 to 12\sqrt{10}.
x=-\frac{6\sqrt{10}}{5}+3
Divide -30+12\sqrt{10} by -10.
x=\frac{-12\sqrt{10}-30}{-10}
Now solve the equation x=\frac{-30±12\sqrt{10}}{-10} when ± is minus. Subtract 12\sqrt{10} from -30.
x=\frac{6\sqrt{10}}{5}+3
Divide -30-12\sqrt{10} by -10.
x=-\frac{6\sqrt{10}}{5}+3 x=\frac{6\sqrt{10}}{5}+3
The equation is now solved.
-5x^{2}+30x+35=8
Swap sides so that all variable terms are on the left hand side.
-5x^{2}+30x=8-35
Subtract 35 from both sides.
-5x^{2}+30x=-27
Subtract 35 from 8 to get -27.
\frac{-5x^{2}+30x}{-5}=-\frac{27}{-5}
Divide both sides by -5.
x^{2}+\frac{30}{-5}x=-\frac{27}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-6x=-\frac{27}{-5}
Divide 30 by -5.
x^{2}-6x=\frac{27}{5}
Divide -27 by -5.
x^{2}-6x+\left(-3\right)^{2}=\frac{27}{5}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=\frac{27}{5}+9
Square -3.
x^{2}-6x+9=\frac{72}{5}
Add \frac{27}{5} to 9.
\left(x-3\right)^{2}=\frac{72}{5}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{72}{5}}
Take the square root of both sides of the equation.
x-3=\frac{6\sqrt{10}}{5} x-3=-\frac{6\sqrt{10}}{5}
Simplify.
x=\frac{6\sqrt{10}}{5}+3 x=-\frac{6\sqrt{10}}{5}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}