Solve for x
x=2\sqrt{3}+6\approx 9.464101615
x=6-2\sqrt{3}\approx 2.535898385
Graph
Share
Copied to clipboard
8=-\frac{1}{6}\left(x^{2}-12x+36\right)+10
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
8=-\frac{1}{6}x^{2}+2x-6+10
Use the distributive property to multiply -\frac{1}{6} by x^{2}-12x+36.
8=-\frac{1}{6}x^{2}+2x+4
Add -6 and 10 to get 4.
-\frac{1}{6}x^{2}+2x+4=8
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}x^{2}+2x+4-8=0
Subtract 8 from both sides.
-\frac{1}{6}x^{2}+2x-4=0
Subtract 8 from 4 to get -4.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{6}\right)\left(-4\right)}}{2\left(-\frac{1}{6}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{6} for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{6}\right)\left(-4\right)}}{2\left(-\frac{1}{6}\right)}
Square 2.
x=\frac{-2±\sqrt{4+\frac{2}{3}\left(-4\right)}}{2\left(-\frac{1}{6}\right)}
Multiply -4 times -\frac{1}{6}.
x=\frac{-2±\sqrt{4-\frac{8}{3}}}{2\left(-\frac{1}{6}\right)}
Multiply \frac{2}{3} times -4.
x=\frac{-2±\sqrt{\frac{4}{3}}}{2\left(-\frac{1}{6}\right)}
Add 4 to -\frac{8}{3}.
x=\frac{-2±\frac{2\sqrt{3}}{3}}{2\left(-\frac{1}{6}\right)}
Take the square root of \frac{4}{3}.
x=\frac{-2±\frac{2\sqrt{3}}{3}}{-\frac{1}{3}}
Multiply 2 times -\frac{1}{6}.
x=\frac{\frac{2\sqrt{3}}{3}-2}{-\frac{1}{3}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{3}}{3}}{-\frac{1}{3}} when ± is plus. Add -2 to \frac{2\sqrt{3}}{3}.
x=6-2\sqrt{3}
Divide -2+\frac{2\sqrt{3}}{3} by -\frac{1}{3} by multiplying -2+\frac{2\sqrt{3}}{3} by the reciprocal of -\frac{1}{3}.
x=\frac{-\frac{2\sqrt{3}}{3}-2}{-\frac{1}{3}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{3}}{3}}{-\frac{1}{3}} when ± is minus. Subtract \frac{2\sqrt{3}}{3} from -2.
x=2\sqrt{3}+6
Divide -2-\frac{2\sqrt{3}}{3} by -\frac{1}{3} by multiplying -2-\frac{2\sqrt{3}}{3} by the reciprocal of -\frac{1}{3}.
x=6-2\sqrt{3} x=2\sqrt{3}+6
The equation is now solved.
8=-\frac{1}{6}\left(x^{2}-12x+36\right)+10
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
8=-\frac{1}{6}x^{2}+2x-6+10
Use the distributive property to multiply -\frac{1}{6} by x^{2}-12x+36.
8=-\frac{1}{6}x^{2}+2x+4
Add -6 and 10 to get 4.
-\frac{1}{6}x^{2}+2x+4=8
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}x^{2}+2x=8-4
Subtract 4 from both sides.
-\frac{1}{6}x^{2}+2x=4
Subtract 4 from 8 to get 4.
\frac{-\frac{1}{6}x^{2}+2x}{-\frac{1}{6}}=\frac{4}{-\frac{1}{6}}
Multiply both sides by -6.
x^{2}+\frac{2}{-\frac{1}{6}}x=\frac{4}{-\frac{1}{6}}
Dividing by -\frac{1}{6} undoes the multiplication by -\frac{1}{6}.
x^{2}-12x=\frac{4}{-\frac{1}{6}}
Divide 2 by -\frac{1}{6} by multiplying 2 by the reciprocal of -\frac{1}{6}.
x^{2}-12x=-24
Divide 4 by -\frac{1}{6} by multiplying 4 by the reciprocal of -\frac{1}{6}.
x^{2}-12x+\left(-6\right)^{2}=-24+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-24+36
Square -6.
x^{2}-12x+36=12
Add -24 to 36.
\left(x-6\right)^{2}=12
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-6=2\sqrt{3} x-6=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+6 x=6-2\sqrt{3}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}