Solve for x
x=\frac{6\sqrt{2}-3}{7}\approx 0.783611625
x=\frac{-6\sqrt{2}-3}{7}\approx -1.640754482
Graph
Share
Copied to clipboard
8=\frac{\left(x-3\right)^{2}}{x^{2}}
To raise \frac{x-3}{x} to a power, raise both numerator and denominator to the power and then divide.
8=\frac{x^{2}-6x+9}{x^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{x^{2}-6x+9}{x^{2}}=8
Swap sides so that all variable terms are on the left hand side.
\frac{x^{2}-6x+9}{x^{2}}-8=0
Subtract 8 from both sides.
\frac{x^{2}-6x+9}{x^{2}}-\frac{8x^{2}}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{x^{2}}{x^{2}}.
\frac{x^{2}-6x+9-8x^{2}}{x^{2}}=0
Since \frac{x^{2}-6x+9}{x^{2}} and \frac{8x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-7x^{2}-6x+9}{x^{2}}=0
Combine like terms in x^{2}-6x+9-8x^{2}.
-7x^{2}-6x+9=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-7\right)\times 9}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, -6 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-7\right)\times 9}}{2\left(-7\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+28\times 9}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\left(-6\right)±\sqrt{36+252}}{2\left(-7\right)}
Multiply 28 times 9.
x=\frac{-\left(-6\right)±\sqrt{288}}{2\left(-7\right)}
Add 36 to 252.
x=\frac{-\left(-6\right)±12\sqrt{2}}{2\left(-7\right)}
Take the square root of 288.
x=\frac{6±12\sqrt{2}}{2\left(-7\right)}
The opposite of -6 is 6.
x=\frac{6±12\sqrt{2}}{-14}
Multiply 2 times -7.
x=\frac{12\sqrt{2}+6}{-14}
Now solve the equation x=\frac{6±12\sqrt{2}}{-14} when ± is plus. Add 6 to 12\sqrt{2}.
x=\frac{-6\sqrt{2}-3}{7}
Divide 12\sqrt{2}+6 by -14.
x=\frac{6-12\sqrt{2}}{-14}
Now solve the equation x=\frac{6±12\sqrt{2}}{-14} when ± is minus. Subtract 12\sqrt{2} from 6.
x=\frac{6\sqrt{2}-3}{7}
Divide 6-12\sqrt{2} by -14.
x=\frac{-6\sqrt{2}-3}{7} x=\frac{6\sqrt{2}-3}{7}
The equation is now solved.
8=\frac{\left(x-3\right)^{2}}{x^{2}}
To raise \frac{x-3}{x} to a power, raise both numerator and denominator to the power and then divide.
8=\frac{x^{2}-6x+9}{x^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{x^{2}-6x+9}{x^{2}}=8
Swap sides so that all variable terms are on the left hand side.
x^{2}-6x+9=8x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
x^{2}-6x+9-8x^{2}=0
Subtract 8x^{2} from both sides.
-7x^{2}-6x+9=0
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}-6x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{-7x^{2}-6x}{-7}=-\frac{9}{-7}
Divide both sides by -7.
x^{2}+\left(-\frac{6}{-7}\right)x=-\frac{9}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}+\frac{6}{7}x=-\frac{9}{-7}
Divide -6 by -7.
x^{2}+\frac{6}{7}x=\frac{9}{7}
Divide -9 by -7.
x^{2}+\frac{6}{7}x+\left(\frac{3}{7}\right)^{2}=\frac{9}{7}+\left(\frac{3}{7}\right)^{2}
Divide \frac{6}{7}, the coefficient of the x term, by 2 to get \frac{3}{7}. Then add the square of \frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{9}{7}+\frac{9}{49}
Square \frac{3}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{72}{49}
Add \frac{9}{7} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{7}\right)^{2}=\frac{72}{49}
Factor x^{2}+\frac{6}{7}x+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{7}\right)^{2}}=\sqrt{\frac{72}{49}}
Take the square root of both sides of the equation.
x+\frac{3}{7}=\frac{6\sqrt{2}}{7} x+\frac{3}{7}=-\frac{6\sqrt{2}}{7}
Simplify.
x=\frac{6\sqrt{2}-3}{7} x=\frac{-6\sqrt{2}-3}{7}
Subtract \frac{3}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}