Solve for n_1
n_{1}=-\frac{n_{2}w}{w-8n_{2}}
n_{2}\neq 0\text{ and }w\neq 0\text{ and }w\neq 8n_{2}
Solve for n_2
n_{2}=-\frac{n_{1}w}{w-8n_{1}}
n_{1}\neq 0\text{ and }w\neq 0\text{ and }w\neq 8n_{1}
Share
Copied to clipboard
8n_{1}n_{2}=n_{2}w+n_{1}w
Variable n_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n_{1}n_{2}, the least common multiple of n_{1},n_{2}.
8n_{1}n_{2}-n_{1}w=n_{2}w
Subtract n_{1}w from both sides.
\left(8n_{2}-w\right)n_{1}=n_{2}w
Combine all terms containing n_{1}.
\frac{\left(8n_{2}-w\right)n_{1}}{8n_{2}-w}=\frac{n_{2}w}{8n_{2}-w}
Divide both sides by 8n_{2}-w.
n_{1}=\frac{n_{2}w}{8n_{2}-w}
Dividing by 8n_{2}-w undoes the multiplication by 8n_{2}-w.
n_{1}=\frac{n_{2}w}{8n_{2}-w}\text{, }n_{1}\neq 0
Variable n_{1} cannot be equal to 0.
8n_{1}n_{2}=n_{2}w+n_{1}w
Variable n_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n_{1}n_{2}, the least common multiple of n_{1},n_{2}.
8n_{1}n_{2}-n_{2}w=n_{1}w
Subtract n_{2}w from both sides.
\left(8n_{1}-w\right)n_{2}=n_{1}w
Combine all terms containing n_{2}.
\frac{\left(8n_{1}-w\right)n_{2}}{8n_{1}-w}=\frac{n_{1}w}{8n_{1}-w}
Divide both sides by 8n_{1}-w.
n_{2}=\frac{n_{1}w}{8n_{1}-w}
Dividing by 8n_{1}-w undoes the multiplication by 8n_{1}-w.
n_{2}=\frac{n_{1}w}{8n_{1}-w}\text{, }n_{2}\neq 0
Variable n_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}