Solve for x
x = \frac{64}{63} = 1\frac{1}{63} \approx 1.015873016
Graph
Share
Copied to clipboard
\frac{80}{42}=\frac{x}{9.6}\times 18
Expand \frac{8}{4.2} by multiplying both numerator and the denominator by 10.
\frac{40}{21}=\frac{x}{9.6}\times 18
Reduce the fraction \frac{80}{42} to lowest terms by extracting and canceling out 2.
\frac{x}{9.6}\times 18=\frac{40}{21}
Swap sides so that all variable terms are on the left hand side.
\frac{x}{9.6}=\frac{\frac{40}{21}}{18}
Divide both sides by 18.
\frac{x}{9.6}=\frac{40}{21\times 18}
Express \frac{\frac{40}{21}}{18} as a single fraction.
\frac{x}{9.6}=\frac{40}{378}
Multiply 21 and 18 to get 378.
\frac{x}{9.6}=\frac{20}{189}
Reduce the fraction \frac{40}{378} to lowest terms by extracting and canceling out 2.
x=\frac{20}{189}\times 9.6
Multiply both sides by 9.6.
x=\frac{20}{189}\times \frac{48}{5}
Convert decimal number 9.6 to fraction \frac{96}{10}. Reduce the fraction \frac{96}{10} to lowest terms by extracting and canceling out 2.
x=\frac{20\times 48}{189\times 5}
Multiply \frac{20}{189} times \frac{48}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{960}{945}
Do the multiplications in the fraction \frac{20\times 48}{189\times 5}.
x=\frac{64}{63}
Reduce the fraction \frac{960}{945} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}