Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{9-yz}{7z-3y}\text{, }&z\neq \frac{3y}{7}\\x\in \mathrm{C}\text{, }&\left(y=\sqrt{21}\text{ and }z=\frac{3\sqrt{21}}{7}\right)\text{ or }\left(y=-\sqrt{21}\text{ and }z=-\frac{3\sqrt{21}}{7}\right)\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{7xz+9}{3x+z}\text{, }&x\neq -\frac{z}{3}\\y\in \mathrm{C}\text{, }&\left(z=-\frac{3\sqrt{21}}{7}\text{ and }x=\frac{\sqrt{21}}{7}\right)\text{ or }\left(z=\frac{3\sqrt{21}}{7}\text{ and }x=-\frac{\sqrt{21}}{7}\right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{9-yz}{7z-3y}\text{, }&z\neq \frac{3y}{7}\\x\in \mathrm{R}\text{, }&\left(y=-\sqrt{21}\text{ and }z=-\frac{3\sqrt{21}}{7}\right)\text{ or }\left(y=\sqrt{21}\text{ and }z=\frac{3\sqrt{21}}{7}\right)\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{7xz+9}{3x+z}\text{, }&x\neq -\frac{z}{3}\\y\in \mathrm{R}\text{, }&\left(z=\frac{3\sqrt{21}}{7}\text{ and }x=-\frac{\sqrt{21}}{7}\right)\text{ or }\left(z=-\frac{3\sqrt{21}}{7}\text{ and }x=\frac{\sqrt{21}}{7}\right)\end{matrix}\right.
Share
Copied to clipboard
7xz+9-3xy=yz
Subtract 3xy from both sides.
7xz-3xy=yz-9
Subtract 9 from both sides.
\left(7z-3y\right)x=yz-9
Combine all terms containing x.
\frac{\left(7z-3y\right)x}{7z-3y}=\frac{yz-9}{7z-3y}
Divide both sides by -3y+7z.
x=\frac{yz-9}{7z-3y}
Dividing by -3y+7z undoes the multiplication by -3y+7z.
yz+3xy=7xz+9
Swap sides so that all variable terms are on the left hand side.
\left(z+3x\right)y=7xz+9
Combine all terms containing y.
\left(3x+z\right)y=7xz+9
The equation is in standard form.
\frac{\left(3x+z\right)y}{3x+z}=\frac{7xz+9}{3x+z}
Divide both sides by z+3x.
y=\frac{7xz+9}{3x+z}
Dividing by z+3x undoes the multiplication by z+3x.
7xz+9-3xy=yz
Subtract 3xy from both sides.
7xz-3xy=yz-9
Subtract 9 from both sides.
\left(7z-3y\right)x=yz-9
Combine all terms containing x.
\frac{\left(7z-3y\right)x}{7z-3y}=\frac{yz-9}{7z-3y}
Divide both sides by -3y+7z.
x=\frac{yz-9}{7z-3y}
Dividing by -3y+7z undoes the multiplication by -3y+7z.
yz+3xy=7xz+9
Swap sides so that all variable terms are on the left hand side.
\left(z+3x\right)y=7xz+9
Combine all terms containing y.
\left(3x+z\right)y=7xz+9
The equation is in standard form.
\frac{\left(3x+z\right)y}{3x+z}=\frac{7xz+9}{3x+z}
Divide both sides by z+3x.
y=\frac{7xz+9}{3x+z}
Dividing by z+3x undoes the multiplication by z+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}