Solve for x
x = \frac{8 \sqrt{37} + 53}{49} \approx 2.07473674
Graph
Share
Copied to clipboard
\left(7x-3\right)^{2}=\left(8\sqrt{x}\right)^{2}
Square both sides of the equation.
49x^{2}-42x+9=\left(8\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-3\right)^{2}.
49x^{2}-42x+9=8^{2}\left(\sqrt{x}\right)^{2}
Expand \left(8\sqrt{x}\right)^{2}.
49x^{2}-42x+9=64\left(\sqrt{x}\right)^{2}
Calculate 8 to the power of 2 and get 64.
49x^{2}-42x+9=64x
Calculate \sqrt{x} to the power of 2 and get x.
49x^{2}-42x+9-64x=0
Subtract 64x from both sides.
49x^{2}-106x+9=0
Combine -42x and -64x to get -106x.
x=\frac{-\left(-106\right)±\sqrt{\left(-106\right)^{2}-4\times 49\times 9}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -106 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-106\right)±\sqrt{11236-4\times 49\times 9}}{2\times 49}
Square -106.
x=\frac{-\left(-106\right)±\sqrt{11236-196\times 9}}{2\times 49}
Multiply -4 times 49.
x=\frac{-\left(-106\right)±\sqrt{11236-1764}}{2\times 49}
Multiply -196 times 9.
x=\frac{-\left(-106\right)±\sqrt{9472}}{2\times 49}
Add 11236 to -1764.
x=\frac{-\left(-106\right)±16\sqrt{37}}{2\times 49}
Take the square root of 9472.
x=\frac{106±16\sqrt{37}}{2\times 49}
The opposite of -106 is 106.
x=\frac{106±16\sqrt{37}}{98}
Multiply 2 times 49.
x=\frac{16\sqrt{37}+106}{98}
Now solve the equation x=\frac{106±16\sqrt{37}}{98} when ± is plus. Add 106 to 16\sqrt{37}.
x=\frac{8\sqrt{37}+53}{49}
Divide 106+16\sqrt{37} by 98.
x=\frac{106-16\sqrt{37}}{98}
Now solve the equation x=\frac{106±16\sqrt{37}}{98} when ± is minus. Subtract 16\sqrt{37} from 106.
x=\frac{53-8\sqrt{37}}{49}
Divide 106-16\sqrt{37} by 98.
x=\frac{8\sqrt{37}+53}{49} x=\frac{53-8\sqrt{37}}{49}
The equation is now solved.
7\times \frac{8\sqrt{37}+53}{49}-3=8\sqrt{\frac{8\sqrt{37}+53}{49}}
Substitute \frac{8\sqrt{37}+53}{49} for x in the equation 7x-3=8\sqrt{x}.
\frac{8}{7}\times 37^{\frac{1}{2}}+\frac{32}{7}=\frac{8}{7}\times 37^{\frac{1}{2}}+\frac{32}{7}
Simplify. The value x=\frac{8\sqrt{37}+53}{49} satisfies the equation.
7\times \frac{53-8\sqrt{37}}{49}-3=8\sqrt{\frac{53-8\sqrt{37}}{49}}
Substitute \frac{53-8\sqrt{37}}{49} for x in the equation 7x-3=8\sqrt{x}.
\frac{32}{7}-\frac{8}{7}\times 37^{\frac{1}{2}}=\frac{8}{7}\times 37^{\frac{1}{2}}-\frac{32}{7}
Simplify. The value x=\frac{53-8\sqrt{37}}{49} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{8\sqrt{37}+53}{49}
Equation 7x-3=8\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}