Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x\times \frac{1}{2}\times \frac{4}{6}\times 5^{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
\frac{7}{2}x\times \frac{4}{6}\times 5^{2}
Multiply 7 and \frac{1}{2} to get \frac{7}{2}.
\frac{7}{2}x\times \frac{2}{3}\times 5^{2}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{7\times 2}{2\times 3}x\times 5^{2}
Multiply \frac{7}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{3}x\times 5^{2}
Cancel out 2 in both numerator and denominator.
\frac{7}{3}x\times 25
Calculate 5 to the power of 2 and get 25.
\frac{7\times 25}{3}x
Express \frac{7}{3}\times 25 as a single fraction.
\frac{175}{3}x
Multiply 7 and 25 to get 175.
\frac{\mathrm{d}}{\mathrm{d}x}(7x\times \frac{1}{2}\times \frac{4}{6}\times 5^{2})
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{2}x\times \frac{4}{6}\times 5^{2})
Multiply 7 and \frac{1}{2} to get \frac{7}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{2}x\times \frac{2}{3}\times 5^{2})
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\times 2}{2\times 3}x\times 5^{2})
Multiply \frac{7}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{3}x\times 5^{2})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{3}x\times 25)
Calculate 5 to the power of 2 and get 25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\times 25}{3}x)
Express \frac{7}{3}\times 25 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{175}{3}x)
Multiply 7 and 25 to get 175.
\frac{175}{3}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{175}{3}x^{0}
Subtract 1 from 1.
\frac{175}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{175}{3}
For any term t, t\times 1=t and 1t=t.