Solve for x (complex solution)
\left\{\begin{matrix}\\x=-\frac{25}{3}\approx -8.333333333\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&z=0\end{matrix}\right.
Solve for z (complex solution)
\left\{\begin{matrix}\\z=0\text{, }&\text{unconditionally}\\z\in \mathrm{C}\text{, }&x=-\frac{25}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-\frac{25}{3}\approx -8.333333333\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&z=0\end{matrix}\right.
Solve for z
\left\{\begin{matrix}\\z=0\text{, }&\text{unconditionally}\\z\in \mathrm{R}\text{, }&x=-\frac{25}{3}\end{matrix}\right.
Share
Copied to clipboard
7x+14z+5z-zx+4xz=10x-3\left(2z+x\right)
Use the distributive property to multiply z by 5-x.
7x+19z-zx+4xz=10x-3\left(2z+x\right)
Combine 14z and 5z to get 19z.
7x+19z+3zx=10x-3\left(2z+x\right)
Combine -zx and 4xz to get 3zx.
7x+19z+3zx=10x-6z-3x
Use the distributive property to multiply -3 by 2z+x.
7x+19z+3zx=7x-6z
Combine 10x and -3x to get 7x.
7x+19z+3zx-7x=-6z
Subtract 7x from both sides.
19z+3zx=-6z
Combine 7x and -7x to get 0.
3zx=-6z-19z
Subtract 19z from both sides.
3zx=-25z
Combine -6z and -19z to get -25z.
\frac{3zx}{3z}=-\frac{25z}{3z}
Divide both sides by 3z.
x=-\frac{25z}{3z}
Dividing by 3z undoes the multiplication by 3z.
x=-\frac{25}{3}
Divide -25z by 3z.
7x+14z+5z-zx+4xz=10x-3\left(2z+x\right)
Use the distributive property to multiply z by 5-x.
7x+19z-zx+4xz=10x-3\left(2z+x\right)
Combine 14z and 5z to get 19z.
7x+19z+3zx=10x-3\left(2z+x\right)
Combine -zx and 4xz to get 3zx.
7x+19z+3zx=10x-6z-3x
Use the distributive property to multiply -3 by 2z+x.
7x+19z+3zx=7x-6z
Combine 10x and -3x to get 7x.
7x+19z+3zx+6z=7x
Add 6z to both sides.
7x+25z+3zx=7x
Combine 19z and 6z to get 25z.
25z+3zx=7x-7x
Subtract 7x from both sides.
25z+3zx=0
Combine 7x and -7x to get 0.
\left(25+3x\right)z=0
Combine all terms containing z.
\left(3x+25\right)z=0
The equation is in standard form.
z=0
Divide 0 by 25+3x.
7x+14z+5z-zx+4xz=10x-3\left(2z+x\right)
Use the distributive property to multiply z by 5-x.
7x+19z-zx+4xz=10x-3\left(2z+x\right)
Combine 14z and 5z to get 19z.
7x+19z+3zx=10x-3\left(2z+x\right)
Combine -zx and 4xz to get 3zx.
7x+19z+3zx=10x-6z-3x
Use the distributive property to multiply -3 by 2z+x.
7x+19z+3zx=7x-6z
Combine 10x and -3x to get 7x.
7x+19z+3zx-7x=-6z
Subtract 7x from both sides.
19z+3zx=-6z
Combine 7x and -7x to get 0.
3zx=-6z-19z
Subtract 19z from both sides.
3zx=-25z
Combine -6z and -19z to get -25z.
\frac{3zx}{3z}=-\frac{25z}{3z}
Divide both sides by 3z.
x=-\frac{25z}{3z}
Dividing by 3z undoes the multiplication by 3z.
x=-\frac{25}{3}
Divide -25z by 3z.
7x+14z+5z-zx+4xz=10x-3\left(2z+x\right)
Use the distributive property to multiply z by 5-x.
7x+19z-zx+4xz=10x-3\left(2z+x\right)
Combine 14z and 5z to get 19z.
7x+19z+3zx=10x-3\left(2z+x\right)
Combine -zx and 4xz to get 3zx.
7x+19z+3zx=10x-6z-3x
Use the distributive property to multiply -3 by 2z+x.
7x+19z+3zx=7x-6z
Combine 10x and -3x to get 7x.
7x+19z+3zx+6z=7x
Add 6z to both sides.
7x+25z+3zx=7x
Combine 19z and 6z to get 25z.
25z+3zx=7x-7x
Subtract 7x from both sides.
25z+3zx=0
Combine 7x and -7x to get 0.
\left(25+3x\right)z=0
Combine all terms containing z.
\left(3x+25\right)z=0
The equation is in standard form.
z=0
Divide 0 by 25+3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}