Evaluate
\frac{798}{17}\approx 46.941176471
Factor
\frac{2 \cdot 3 \cdot 7 \cdot 19}{17} = 46\frac{16}{17} = 46.94117647058823
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)798}\\\end{array}
Use the 1^{st} digit 7 from dividend 798
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)798}\\\end{array}
Since 7 is less than 17, use the next digit 9 from dividend 798 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)798}\\\end{array}
Use the 2^{nd} digit 9 from dividend 798
\begin{array}{l}\phantom{17)}04\phantom{4}\\17\overline{)798}\\\phantom{17)}\underline{\phantom{}68\phantom{9}}\\\phantom{17)}11\\\end{array}
Find closest multiple of 17 to 79. We see that 4 \times 17 = 68 is the nearest. Now subtract 68 from 79 to get reminder 11. Add 4 to quotient.
\begin{array}{l}\phantom{17)}04\phantom{5}\\17\overline{)798}\\\phantom{17)}\underline{\phantom{}68\phantom{9}}\\\phantom{17)}118\\\end{array}
Use the 3^{rd} digit 8 from dividend 798
\begin{array}{l}\phantom{17)}046\phantom{6}\\17\overline{)798}\\\phantom{17)}\underline{\phantom{}68\phantom{9}}\\\phantom{17)}118\\\phantom{17)}\underline{\phantom{}102\phantom{}}\\\phantom{17)9}16\\\end{array}
Find closest multiple of 17 to 118. We see that 6 \times 17 = 102 is the nearest. Now subtract 102 from 118 to get reminder 16. Add 6 to quotient.
\text{Quotient: }46 \text{Reminder: }16
Since 16 is less than 17, stop the division. The reminder is 16. The topmost line 046 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}