Evaluate
\frac{13200}{7}\approx 1885.714285714
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {2} \cdot 11}{7} = 1885\frac{5}{7} = 1885.7142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)79200}\\\end{array}
Use the 1^{st} digit 7 from dividend 79200
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)79200}\\\end{array}
Since 7 is less than 42, use the next digit 9 from dividend 79200 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)79200}\\\end{array}
Use the 2^{nd} digit 9 from dividend 79200
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}37\\\end{array}
Find closest multiple of 42 to 79. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 79 to get reminder 37. Add 1 to quotient.
\begin{array}{l}\phantom{42)}01\phantom{5}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}372\\\end{array}
Use the 3^{rd} digit 2 from dividend 79200
\begin{array}{l}\phantom{42)}018\phantom{6}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}372\\\phantom{42)}\underline{\phantom{}336\phantom{99}}\\\phantom{42)9}36\\\end{array}
Find closest multiple of 42 to 372. We see that 8 \times 42 = 336 is the nearest. Now subtract 336 from 372 to get reminder 36. Add 8 to quotient.
\begin{array}{l}\phantom{42)}018\phantom{7}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}372\\\phantom{42)}\underline{\phantom{}336\phantom{99}}\\\phantom{42)9}360\\\end{array}
Use the 4^{th} digit 0 from dividend 79200
\begin{array}{l}\phantom{42)}0188\phantom{8}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}372\\\phantom{42)}\underline{\phantom{}336\phantom{99}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{9}}\\\phantom{42)99}24\\\end{array}
Find closest multiple of 42 to 360. We see that 8 \times 42 = 336 is the nearest. Now subtract 336 from 360 to get reminder 24. Add 8 to quotient.
\begin{array}{l}\phantom{42)}0188\phantom{9}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}372\\\phantom{42)}\underline{\phantom{}336\phantom{99}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{9}}\\\phantom{42)99}240\\\end{array}
Use the 5^{th} digit 0 from dividend 79200
\begin{array}{l}\phantom{42)}01885\phantom{10}\\42\overline{)79200}\\\phantom{42)}\underline{\phantom{}42\phantom{999}}\\\phantom{42)}372\\\phantom{42)}\underline{\phantom{}336\phantom{99}}\\\phantom{42)9}360\\\phantom{42)}\underline{\phantom{9}336\phantom{9}}\\\phantom{42)99}240\\\phantom{42)}\underline{\phantom{99}210\phantom{}}\\\phantom{42)999}30\\\end{array}
Find closest multiple of 42 to 240. We see that 5 \times 42 = 210 is the nearest. Now subtract 210 from 240 to get reminder 30. Add 5 to quotient.
\text{Quotient: }1885 \text{Reminder: }30
Since 30 is less than 42, stop the division. The reminder is 30. The topmost line 01885 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1885.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}