Evaluate
\frac{1973}{1353}\approx 1.458240946
Factor
\frac{1973}{3 \cdot 11 \cdot 41} = 1\frac{620}{1353} = 1.458240946045824
Share
Copied to clipboard
\begin{array}{l}\phantom{5412)}\phantom{1}\\5412\overline{)7892}\\\end{array}
Use the 1^{st} digit 7 from dividend 7892
\begin{array}{l}\phantom{5412)}0\phantom{2}\\5412\overline{)7892}\\\end{array}
Since 7 is less than 5412, use the next digit 8 from dividend 7892 and add 0 to the quotient
\begin{array}{l}\phantom{5412)}0\phantom{3}\\5412\overline{)7892}\\\end{array}
Use the 2^{nd} digit 8 from dividend 7892
\begin{array}{l}\phantom{5412)}00\phantom{4}\\5412\overline{)7892}\\\end{array}
Since 78 is less than 5412, use the next digit 9 from dividend 7892 and add 0 to the quotient
\begin{array}{l}\phantom{5412)}00\phantom{5}\\5412\overline{)7892}\\\end{array}
Use the 3^{rd} digit 9 from dividend 7892
\begin{array}{l}\phantom{5412)}000\phantom{6}\\5412\overline{)7892}\\\end{array}
Since 789 is less than 5412, use the next digit 2 from dividend 7892 and add 0 to the quotient
\begin{array}{l}\phantom{5412)}000\phantom{7}\\5412\overline{)7892}\\\end{array}
Use the 4^{th} digit 2 from dividend 7892
\begin{array}{l}\phantom{5412)}0001\phantom{8}\\5412\overline{)7892}\\\phantom{5412)}\underline{\phantom{}5412\phantom{}}\\\phantom{5412)}2480\\\end{array}
Find closest multiple of 5412 to 7892. We see that 1 \times 5412 = 5412 is the nearest. Now subtract 5412 from 7892 to get reminder 2480. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2480
Since 2480 is less than 5412, stop the division. The reminder is 2480. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}