Evaluate
\frac{789}{56}\approx 14.089285714
Factor
\frac{3 \cdot 263}{2 ^ {3} \cdot 7} = 14\frac{5}{56} = 14.089285714285714
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)789}\\\end{array}
Use the 1^{st} digit 7 from dividend 789
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)789}\\\end{array}
Since 7 is less than 56, use the next digit 8 from dividend 789 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)789}\\\end{array}
Use the 2^{nd} digit 8 from dividend 789
\begin{array}{l}\phantom{56)}01\phantom{4}\\56\overline{)789}\\\phantom{56)}\underline{\phantom{}56\phantom{9}}\\\phantom{56)}22\\\end{array}
Find closest multiple of 56 to 78. We see that 1 \times 56 = 56 is the nearest. Now subtract 56 from 78 to get reminder 22. Add 1 to quotient.
\begin{array}{l}\phantom{56)}01\phantom{5}\\56\overline{)789}\\\phantom{56)}\underline{\phantom{}56\phantom{9}}\\\phantom{56)}229\\\end{array}
Use the 3^{rd} digit 9 from dividend 789
\begin{array}{l}\phantom{56)}014\phantom{6}\\56\overline{)789}\\\phantom{56)}\underline{\phantom{}56\phantom{9}}\\\phantom{56)}229\\\phantom{56)}\underline{\phantom{}224\phantom{}}\\\phantom{56)99}5\\\end{array}
Find closest multiple of 56 to 229. We see that 4 \times 56 = 224 is the nearest. Now subtract 224 from 229 to get reminder 5. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }5
Since 5 is less than 56, stop the division. The reminder is 5. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}