Evaluate
\frac{394}{161}\approx 2.447204969
Factor
\frac{2 \cdot 197}{7 \cdot 23} = 2\frac{72}{161} = 2.4472049689440993
Share
Copied to clipboard
\begin{array}{l}\phantom{322)}\phantom{1}\\322\overline{)788}\\\end{array}
Use the 1^{st} digit 7 from dividend 788
\begin{array}{l}\phantom{322)}0\phantom{2}\\322\overline{)788}\\\end{array}
Since 7 is less than 322, use the next digit 8 from dividend 788 and add 0 to the quotient
\begin{array}{l}\phantom{322)}0\phantom{3}\\322\overline{)788}\\\end{array}
Use the 2^{nd} digit 8 from dividend 788
\begin{array}{l}\phantom{322)}00\phantom{4}\\322\overline{)788}\\\end{array}
Since 78 is less than 322, use the next digit 8 from dividend 788 and add 0 to the quotient
\begin{array}{l}\phantom{322)}00\phantom{5}\\322\overline{)788}\\\end{array}
Use the 3^{rd} digit 8 from dividend 788
\begin{array}{l}\phantom{322)}002\phantom{6}\\322\overline{)788}\\\phantom{322)}\underline{\phantom{}644\phantom{}}\\\phantom{322)}144\\\end{array}
Find closest multiple of 322 to 788. We see that 2 \times 322 = 644 is the nearest. Now subtract 644 from 788 to get reminder 144. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }144
Since 144 is less than 322, stop the division. The reminder is 144. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}