Evaluate
\frac{7877}{986}\approx 7.988843813
Factor
\frac{7877}{2 \cdot 17 \cdot 29} = 7\frac{975}{986} = 7.988843813387424
Share
Copied to clipboard
\begin{array}{l}\phantom{986)}\phantom{1}\\986\overline{)7877}\\\end{array}
Use the 1^{st} digit 7 from dividend 7877
\begin{array}{l}\phantom{986)}0\phantom{2}\\986\overline{)7877}\\\end{array}
Since 7 is less than 986, use the next digit 8 from dividend 7877 and add 0 to the quotient
\begin{array}{l}\phantom{986)}0\phantom{3}\\986\overline{)7877}\\\end{array}
Use the 2^{nd} digit 8 from dividend 7877
\begin{array}{l}\phantom{986)}00\phantom{4}\\986\overline{)7877}\\\end{array}
Since 78 is less than 986, use the next digit 7 from dividend 7877 and add 0 to the quotient
\begin{array}{l}\phantom{986)}00\phantom{5}\\986\overline{)7877}\\\end{array}
Use the 3^{rd} digit 7 from dividend 7877
\begin{array}{l}\phantom{986)}000\phantom{6}\\986\overline{)7877}\\\end{array}
Since 787 is less than 986, use the next digit 7 from dividend 7877 and add 0 to the quotient
\begin{array}{l}\phantom{986)}000\phantom{7}\\986\overline{)7877}\\\end{array}
Use the 4^{th} digit 7 from dividend 7877
\begin{array}{l}\phantom{986)}0007\phantom{8}\\986\overline{)7877}\\\phantom{986)}\underline{\phantom{}6902\phantom{}}\\\phantom{986)9}975\\\end{array}
Find closest multiple of 986 to 7877. We see that 7 \times 986 = 6902 is the nearest. Now subtract 6902 from 7877 to get reminder 975. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }975
Since 975 is less than 986, stop the division. The reminder is 975. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}