Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)787245}\\\end{array}
Use the 1^{st} digit 7 from dividend 787245
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)787245}\\\end{array}
Since 7 is less than 11, use the next digit 8 from dividend 787245 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)787245}\\\end{array}
Use the 2^{nd} digit 8 from dividend 787245
\begin{array}{l}\phantom{11)}07\phantom{4}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}1\\\end{array}
Find closest multiple of 11 to 78. We see that 7 \times 11 = 77 is the nearest. Now subtract 77 from 78 to get reminder 1. Add 7 to quotient.
\begin{array}{l}\phantom{11)}07\phantom{5}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\end{array}
Use the 3^{rd} digit 7 from dividend 787245
\begin{array}{l}\phantom{11)}071\phantom{6}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}6\\\end{array}
Find closest multiple of 11 to 17. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 17 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{11)}071\phantom{7}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}62\\\end{array}
Use the 4^{th} digit 2 from dividend 787245
\begin{array}{l}\phantom{11)}0715\phantom{8}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}62\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}7\\\end{array}
Find closest multiple of 11 to 62. We see that 5 \times 11 = 55 is the nearest. Now subtract 55 from 62 to get reminder 7. Add 5 to quotient.
\begin{array}{l}\phantom{11)}0715\phantom{9}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}62\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}74\\\end{array}
Use the 5^{th} digit 4 from dividend 787245
\begin{array}{l}\phantom{11)}07156\phantom{10}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}62\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}74\\\phantom{11)}\underline{\phantom{999}66\phantom{9}}\\\phantom{11)9999}8\\\end{array}
Find closest multiple of 11 to 74. We see that 6 \times 11 = 66 is the nearest. Now subtract 66 from 74 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{11)}07156\phantom{11}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}62\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}74\\\phantom{11)}\underline{\phantom{999}66\phantom{9}}\\\phantom{11)9999}85\\\end{array}
Use the 6^{th} digit 5 from dividend 787245
\begin{array}{l}\phantom{11)}071567\phantom{12}\\11\overline{)787245}\\\phantom{11)}\underline{\phantom{}77\phantom{9999}}\\\phantom{11)9}17\\\phantom{11)}\underline{\phantom{9}11\phantom{999}}\\\phantom{11)99}62\\\phantom{11)}\underline{\phantom{99}55\phantom{99}}\\\phantom{11)999}74\\\phantom{11)}\underline{\phantom{999}66\phantom{9}}\\\phantom{11)9999}85\\\phantom{11)}\underline{\phantom{9999}77\phantom{}}\\\phantom{11)99999}8\\\end{array}
Find closest multiple of 11 to 85. We see that 7 \times 11 = 77 is the nearest. Now subtract 77 from 85 to get reminder 8. Add 7 to quotient.
\text{Quotient: }71567 \text{Reminder: }8
Since 8 is less than 11, stop the division. The reminder is 8. The topmost line 071567 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 71567.