Evaluate
\frac{787}{24}\approx 32.791666667
Factor
\frac{787}{2 ^ {3} \cdot 3} = 32\frac{19}{24} = 32.791666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)787}\\\end{array}
Use the 1^{st} digit 7 from dividend 787
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)787}\\\end{array}
Since 7 is less than 24, use the next digit 8 from dividend 787 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)787}\\\end{array}
Use the 2^{nd} digit 8 from dividend 787
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)787}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}6\\\end{array}
Find closest multiple of 24 to 78. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 78 to get reminder 6. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)787}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}67\\\end{array}
Use the 3^{rd} digit 7 from dividend 787
\begin{array}{l}\phantom{24)}032\phantom{6}\\24\overline{)787}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}67\\\phantom{24)}\underline{\phantom{9}48\phantom{}}\\\phantom{24)9}19\\\end{array}
Find closest multiple of 24 to 67. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 67 to get reminder 19. Add 2 to quotient.
\text{Quotient: }32 \text{Reminder: }19
Since 19 is less than 24, stop the division. The reminder is 19. The topmost line 032 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}