Evaluate
28
Factor
2^{2}\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)784}\\\end{array}
Use the 1^{st} digit 7 from dividend 784
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)784}\\\end{array}
Since 7 is less than 28, use the next digit 8 from dividend 784 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)784}\\\end{array}
Use the 2^{nd} digit 8 from dividend 784
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)784}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}22\\\end{array}
Find closest multiple of 28 to 78. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 78 to get reminder 22. Add 2 to quotient.
\begin{array}{l}\phantom{28)}02\phantom{5}\\28\overline{)784}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}224\\\end{array}
Use the 3^{rd} digit 4 from dividend 784
\begin{array}{l}\phantom{28)}028\phantom{6}\\28\overline{)784}\\\phantom{28)}\underline{\phantom{}56\phantom{9}}\\\phantom{28)}224\\\phantom{28)}\underline{\phantom{}224\phantom{}}\\\phantom{28)999}0\\\end{array}
Find closest multiple of 28 to 224. We see that 8 \times 28 = 224 is the nearest. Now subtract 224 from 224 to get reminder 0. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }0
Since 0 is less than 28, stop the division. The reminder is 0. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}