Evaluate
56
Factor
2^{3}\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)784}\\\end{array}
Use the 1^{st} digit 7 from dividend 784
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)784}\\\end{array}
Since 7 is less than 14, use the next digit 8 from dividend 784 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)784}\\\end{array}
Use the 2^{nd} digit 8 from dividend 784
\begin{array}{l}\phantom{14)}05\phantom{4}\\14\overline{)784}\\\phantom{14)}\underline{\phantom{}70\phantom{9}}\\\phantom{14)9}8\\\end{array}
Find closest multiple of 14 to 78. We see that 5 \times 14 = 70 is the nearest. Now subtract 70 from 78 to get reminder 8. Add 5 to quotient.
\begin{array}{l}\phantom{14)}05\phantom{5}\\14\overline{)784}\\\phantom{14)}\underline{\phantom{}70\phantom{9}}\\\phantom{14)9}84\\\end{array}
Use the 3^{rd} digit 4 from dividend 784
\begin{array}{l}\phantom{14)}056\phantom{6}\\14\overline{)784}\\\phantom{14)}\underline{\phantom{}70\phantom{9}}\\\phantom{14)9}84\\\phantom{14)}\underline{\phantom{9}84\phantom{}}\\\phantom{14)999}0\\\end{array}
Find closest multiple of 14 to 84. We see that 6 \times 14 = 84 is the nearest. Now subtract 84 from 84 to get reminder 0. Add 6 to quotient.
\text{Quotient: }56 \text{Reminder: }0
Since 0 is less than 14, stop the division. The reminder is 0. The topmost line 056 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}