Evaluate
\frac{156}{17}\approx 9.176470588
Factor
\frac{2 ^ {2} \cdot 3 \cdot 13}{17} = 9\frac{3}{17} = 9.176470588235293
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)780}\\\end{array}
Use the 1^{st} digit 7 from dividend 780
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)780}\\\end{array}
Since 7 is less than 85, use the next digit 8 from dividend 780 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)780}\\\end{array}
Use the 2^{nd} digit 8 from dividend 780
\begin{array}{l}\phantom{85)}00\phantom{4}\\85\overline{)780}\\\end{array}
Since 78 is less than 85, use the next digit 0 from dividend 780 and add 0 to the quotient
\begin{array}{l}\phantom{85)}00\phantom{5}\\85\overline{)780}\\\end{array}
Use the 3^{rd} digit 0 from dividend 780
\begin{array}{l}\phantom{85)}009\phantom{6}\\85\overline{)780}\\\phantom{85)}\underline{\phantom{}765\phantom{}}\\\phantom{85)9}15\\\end{array}
Find closest multiple of 85 to 780. We see that 9 \times 85 = 765 is the nearest. Now subtract 765 from 780 to get reminder 15. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }15
Since 15 is less than 85, stop the division. The reminder is 15. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}