Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

78=\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
\frac{49}{10}t^{2}=78
Swap sides so that all variable terms are on the left hand side.
t^{2}=78\times \frac{10}{49}
Multiply both sides by \frac{10}{49}, the reciprocal of \frac{49}{10}.
t^{2}=\frac{780}{49}
Multiply 78 and \frac{10}{49} to get \frac{780}{49}.
t=\frac{2\sqrt{195}}{7} t=-\frac{2\sqrt{195}}{7}
Take the square root of both sides of the equation.
78=\frac{49}{10}t^{2}
Multiply \frac{1}{2} and 9.8 to get \frac{49}{10}.
\frac{49}{10}t^{2}=78
Swap sides so that all variable terms are on the left hand side.
\frac{49}{10}t^{2}-78=0
Subtract 78 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times \frac{49}{10}\left(-78\right)}}{2\times \frac{49}{10}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{49}{10} for a, 0 for b, and -78 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times \frac{49}{10}\left(-78\right)}}{2\times \frac{49}{10}}
Square 0.
t=\frac{0±\sqrt{-\frac{98}{5}\left(-78\right)}}{2\times \frac{49}{10}}
Multiply -4 times \frac{49}{10}.
t=\frac{0±\sqrt{\frac{7644}{5}}}{2\times \frac{49}{10}}
Multiply -\frac{98}{5} times -78.
t=\frac{0±\frac{14\sqrt{195}}{5}}{2\times \frac{49}{10}}
Take the square root of \frac{7644}{5}.
t=\frac{0±\frac{14\sqrt{195}}{5}}{\frac{49}{5}}
Multiply 2 times \frac{49}{10}.
t=\frac{2\sqrt{195}}{7}
Now solve the equation t=\frac{0±\frac{14\sqrt{195}}{5}}{\frac{49}{5}} when ± is plus.
t=-\frac{2\sqrt{195}}{7}
Now solve the equation t=\frac{0±\frac{14\sqrt{195}}{5}}{\frac{49}{5}} when ± is minus.
t=\frac{2\sqrt{195}}{7} t=-\frac{2\sqrt{195}}{7}
The equation is now solved.