Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)774}\\\end{array}
Use the 1^{st} digit 7 from dividend 774
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)774}\\\end{array}
Since 7 is less than 43, use the next digit 7 from dividend 774 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)774}\\\end{array}
Use the 2^{nd} digit 7 from dividend 774
\begin{array}{l}\phantom{43)}01\phantom{4}\\43\overline{)774}\\\phantom{43)}\underline{\phantom{}43\phantom{9}}\\\phantom{43)}34\\\end{array}
Find closest multiple of 43 to 77. We see that 1 \times 43 = 43 is the nearest. Now subtract 43 from 77 to get reminder 34. Add 1 to quotient.
\begin{array}{l}\phantom{43)}01\phantom{5}\\43\overline{)774}\\\phantom{43)}\underline{\phantom{}43\phantom{9}}\\\phantom{43)}344\\\end{array}
Use the 3^{rd} digit 4 from dividend 774
\begin{array}{l}\phantom{43)}018\phantom{6}\\43\overline{)774}\\\phantom{43)}\underline{\phantom{}43\phantom{9}}\\\phantom{43)}344\\\phantom{43)}\underline{\phantom{}344\phantom{}}\\\phantom{43)999}0\\\end{array}
Find closest multiple of 43 to 344. We see that 8 \times 43 = 344 is the nearest. Now subtract 344 from 344 to get reminder 0. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }0
Since 0 is less than 43, stop the division. The reminder is 0. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}