Evaluate
\frac{77}{26}\approx 2.961538462
Factor
\frac{7 \cdot 11}{2 \cdot 13} = 2\frac{25}{26} = 2.9615384615384617
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)77}\\\end{array}
Use the 1^{st} digit 7 from dividend 77
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)77}\\\end{array}
Since 7 is less than 26, use the next digit 7 from dividend 77 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)77}\\\end{array}
Use the 2^{nd} digit 7 from dividend 77
\begin{array}{l}\phantom{26)}02\phantom{4}\\26\overline{)77}\\\phantom{26)}\underline{\phantom{}52\phantom{}}\\\phantom{26)}25\\\end{array}
Find closest multiple of 26 to 77. We see that 2 \times 26 = 52 is the nearest. Now subtract 52 from 77 to get reminder 25. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }25
Since 25 is less than 26, stop the division. The reminder is 25. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}