Evaluate
\frac{769}{750}\approx 1.025333333
Factor
\frac{769}{2 \cdot 3 \cdot 5 ^ {3}} = 1\frac{19}{750} = 1.0253333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{750)}\phantom{1}\\750\overline{)769}\\\end{array}
Use the 1^{st} digit 7 from dividend 769
\begin{array}{l}\phantom{750)}0\phantom{2}\\750\overline{)769}\\\end{array}
Since 7 is less than 750, use the next digit 6 from dividend 769 and add 0 to the quotient
\begin{array}{l}\phantom{750)}0\phantom{3}\\750\overline{)769}\\\end{array}
Use the 2^{nd} digit 6 from dividend 769
\begin{array}{l}\phantom{750)}00\phantom{4}\\750\overline{)769}\\\end{array}
Since 76 is less than 750, use the next digit 9 from dividend 769 and add 0 to the quotient
\begin{array}{l}\phantom{750)}00\phantom{5}\\750\overline{)769}\\\end{array}
Use the 3^{rd} digit 9 from dividend 769
\begin{array}{l}\phantom{750)}001\phantom{6}\\750\overline{)769}\\\phantom{750)}\underline{\phantom{}750\phantom{}}\\\phantom{750)9}19\\\end{array}
Find closest multiple of 750 to 769. We see that 1 \times 750 = 750 is the nearest. Now subtract 750 from 769 to get reminder 19. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }19
Since 19 is less than 750, stop the division. The reminder is 19. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}