Evaluate
48
Factor
2^{4}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)768}\\\end{array}
Use the 1^{st} digit 7 from dividend 768
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)768}\\\end{array}
Since 7 is less than 16, use the next digit 6 from dividend 768 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)768}\\\end{array}
Use the 2^{nd} digit 6 from dividend 768
\begin{array}{l}\phantom{16)}04\phantom{4}\\16\overline{)768}\\\phantom{16)}\underline{\phantom{}64\phantom{9}}\\\phantom{16)}12\\\end{array}
Find closest multiple of 16 to 76. We see that 4 \times 16 = 64 is the nearest. Now subtract 64 from 76 to get reminder 12. Add 4 to quotient.
\begin{array}{l}\phantom{16)}04\phantom{5}\\16\overline{)768}\\\phantom{16)}\underline{\phantom{}64\phantom{9}}\\\phantom{16)}128\\\end{array}
Use the 3^{rd} digit 8 from dividend 768
\begin{array}{l}\phantom{16)}048\phantom{6}\\16\overline{)768}\\\phantom{16)}\underline{\phantom{}64\phantom{9}}\\\phantom{16)}128\\\phantom{16)}\underline{\phantom{}128\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 128. We see that 8 \times 16 = 128 is the nearest. Now subtract 128 from 128 to get reminder 0. Add 8 to quotient.
\text{Quotient: }48 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 048 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}