Evaluate
\frac{255}{28}\approx 9.107142857
Factor
\frac{3 \cdot 5 \cdot 17}{2 ^ {2} \cdot 7} = 9\frac{3}{28} = 9.107142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{84)}\phantom{1}\\84\overline{)765}\\\end{array}
Use the 1^{st} digit 7 from dividend 765
\begin{array}{l}\phantom{84)}0\phantom{2}\\84\overline{)765}\\\end{array}
Since 7 is less than 84, use the next digit 6 from dividend 765 and add 0 to the quotient
\begin{array}{l}\phantom{84)}0\phantom{3}\\84\overline{)765}\\\end{array}
Use the 2^{nd} digit 6 from dividend 765
\begin{array}{l}\phantom{84)}00\phantom{4}\\84\overline{)765}\\\end{array}
Since 76 is less than 84, use the next digit 5 from dividend 765 and add 0 to the quotient
\begin{array}{l}\phantom{84)}00\phantom{5}\\84\overline{)765}\\\end{array}
Use the 3^{rd} digit 5 from dividend 765
\begin{array}{l}\phantom{84)}009\phantom{6}\\84\overline{)765}\\\phantom{84)}\underline{\phantom{}756\phantom{}}\\\phantom{84)99}9\\\end{array}
Find closest multiple of 84 to 765. We see that 9 \times 84 = 756 is the nearest. Now subtract 756 from 765 to get reminder 9. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }9
Since 9 is less than 84, stop the division. The reminder is 9. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}