Evaluate
\frac{763}{30}\approx 25.433333333
Factor
\frac{7 \cdot 109}{2 \cdot 3 \cdot 5} = 25\frac{13}{30} = 25.433333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)763}\\\end{array}
Use the 1^{st} digit 7 from dividend 763
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)763}\\\end{array}
Since 7 is less than 30, use the next digit 6 from dividend 763 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)763}\\\end{array}
Use the 2^{nd} digit 6 from dividend 763
\begin{array}{l}\phantom{30)}02\phantom{4}\\30\overline{)763}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}16\\\end{array}
Find closest multiple of 30 to 76. We see that 2 \times 30 = 60 is the nearest. Now subtract 60 from 76 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{30)}02\phantom{5}\\30\overline{)763}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}163\\\end{array}
Use the 3^{rd} digit 3 from dividend 763
\begin{array}{l}\phantom{30)}025\phantom{6}\\30\overline{)763}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}163\\\phantom{30)}\underline{\phantom{}150\phantom{}}\\\phantom{30)9}13\\\end{array}
Find closest multiple of 30 to 163. We see that 5 \times 30 = 150 is the nearest. Now subtract 150 from 163 to get reminder 13. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }13
Since 13 is less than 30, stop the division. The reminder is 13. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}