Evaluate
\frac{127}{3}\approx 42.333333333
Factor
\frac{127}{3} = 42\frac{1}{3} = 42.333333333333336
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)762}\\\end{array}
Use the 1^{st} digit 7 from dividend 762
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)762}\\\end{array}
Since 7 is less than 18, use the next digit 6 from dividend 762 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)762}\\\end{array}
Use the 2^{nd} digit 6 from dividend 762
\begin{array}{l}\phantom{18)}04\phantom{4}\\18\overline{)762}\\\phantom{18)}\underline{\phantom{}72\phantom{9}}\\\phantom{18)9}4\\\end{array}
Find closest multiple of 18 to 76. We see that 4 \times 18 = 72 is the nearest. Now subtract 72 from 76 to get reminder 4. Add 4 to quotient.
\begin{array}{l}\phantom{18)}04\phantom{5}\\18\overline{)762}\\\phantom{18)}\underline{\phantom{}72\phantom{9}}\\\phantom{18)9}42\\\end{array}
Use the 3^{rd} digit 2 from dividend 762
\begin{array}{l}\phantom{18)}042\phantom{6}\\18\overline{)762}\\\phantom{18)}\underline{\phantom{}72\phantom{9}}\\\phantom{18)9}42\\\phantom{18)}\underline{\phantom{9}36\phantom{}}\\\phantom{18)99}6\\\end{array}
Find closest multiple of 18 to 42. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 42 to get reminder 6. Add 2 to quotient.
\text{Quotient: }42 \text{Reminder: }6
Since 6 is less than 18, stop the division. The reminder is 6. The topmost line 042 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}