Evaluate
\frac{19}{2}=9.5
Factor
\frac{19}{2} = 9\frac{1}{2} = 9.5
Share
Copied to clipboard
\begin{array}{l}\phantom{800)}\phantom{1}\\800\overline{)7600}\\\end{array}
Use the 1^{st} digit 7 from dividend 7600
\begin{array}{l}\phantom{800)}0\phantom{2}\\800\overline{)7600}\\\end{array}
Since 7 is less than 800, use the next digit 6 from dividend 7600 and add 0 to the quotient
\begin{array}{l}\phantom{800)}0\phantom{3}\\800\overline{)7600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 7600
\begin{array}{l}\phantom{800)}00\phantom{4}\\800\overline{)7600}\\\end{array}
Since 76 is less than 800, use the next digit 0 from dividend 7600 and add 0 to the quotient
\begin{array}{l}\phantom{800)}00\phantom{5}\\800\overline{)7600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 7600
\begin{array}{l}\phantom{800)}000\phantom{6}\\800\overline{)7600}\\\end{array}
Since 760 is less than 800, use the next digit 0 from dividend 7600 and add 0 to the quotient
\begin{array}{l}\phantom{800)}000\phantom{7}\\800\overline{)7600}\\\end{array}
Use the 4^{th} digit 0 from dividend 7600
\begin{array}{l}\phantom{800)}0009\phantom{8}\\800\overline{)7600}\\\phantom{800)}\underline{\phantom{}7200\phantom{}}\\\phantom{800)9}400\\\end{array}
Find closest multiple of 800 to 7600. We see that 9 \times 800 = 7200 is the nearest. Now subtract 7200 from 7600 to get reminder 400. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }400
Since 400 is less than 800, stop the division. The reminder is 400. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}