Evaluate
\frac{19}{5}=3.8
Factor
\frac{19}{5} = 3\frac{4}{5} = 3.8
Share
Copied to clipboard
\begin{array}{l}\phantom{2000)}\phantom{1}\\2000\overline{)7600}\\\end{array}
Use the 1^{st} digit 7 from dividend 7600
\begin{array}{l}\phantom{2000)}0\phantom{2}\\2000\overline{)7600}\\\end{array}
Since 7 is less than 2000, use the next digit 6 from dividend 7600 and add 0 to the quotient
\begin{array}{l}\phantom{2000)}0\phantom{3}\\2000\overline{)7600}\\\end{array}
Use the 2^{nd} digit 6 from dividend 7600
\begin{array}{l}\phantom{2000)}00\phantom{4}\\2000\overline{)7600}\\\end{array}
Since 76 is less than 2000, use the next digit 0 from dividend 7600 and add 0 to the quotient
\begin{array}{l}\phantom{2000)}00\phantom{5}\\2000\overline{)7600}\\\end{array}
Use the 3^{rd} digit 0 from dividend 7600
\begin{array}{l}\phantom{2000)}000\phantom{6}\\2000\overline{)7600}\\\end{array}
Since 760 is less than 2000, use the next digit 0 from dividend 7600 and add 0 to the quotient
\begin{array}{l}\phantom{2000)}000\phantom{7}\\2000\overline{)7600}\\\end{array}
Use the 4^{th} digit 0 from dividend 7600
\begin{array}{l}\phantom{2000)}0003\phantom{8}\\2000\overline{)7600}\\\phantom{2000)}\underline{\phantom{}6000\phantom{}}\\\phantom{2000)}1600\\\end{array}
Find closest multiple of 2000 to 7600. We see that 3 \times 2000 = 6000 is the nearest. Now subtract 6000 from 7600 to get reminder 1600. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }1600
Since 1600 is less than 2000, stop the division. The reminder is 1600. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}