Solve for a
\left\{\begin{matrix}a=-\frac{k-76}{\left(1.5-h\right)^{3}}\text{, }&h\neq \frac{3}{2}\\a\in \mathrm{R}\text{, }&k=76\text{ and }h=\frac{3}{2}\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{\sqrt[3]{k-76}+\frac{3\sqrt[3]{a}}{2}}{\sqrt[3]{a}}\text{, }&a\neq 0\\h\in \mathrm{R}\text{, }&k=76\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
76=a\left(3.375-6.75h+4.5h^{2}-h^{3}\right)+k
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1.5-h\right)^{3}.
76=3.375a-6.75ah+4.5ah^{2}-ah^{3}+k
Use the distributive property to multiply a by 3.375-6.75h+4.5h^{2}-h^{3}.
3.375a-6.75ah+4.5ah^{2}-ah^{3}+k=76
Swap sides so that all variable terms are on the left hand side.
3.375a-6.75ah+4.5ah^{2}-ah^{3}=76-k
Subtract k from both sides.
\left(3.375-6.75h+4.5h^{2}-h^{3}\right)a=76-k
Combine all terms containing a.
\left(-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+3.375\right)a=76-k
The equation is in standard form.
\frac{\left(-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+3.375\right)a}{-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+3.375}=\frac{76-k}{-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+3.375}
Divide both sides by 3.375-6.75h+4.5h^{2}-h^{3}.
a=\frac{76-k}{-h^{3}+\frac{9h^{2}}{2}-\frac{27h}{4}+3.375}
Dividing by 3.375-6.75h+4.5h^{2}-h^{3} undoes the multiplication by 3.375-6.75h+4.5h^{2}-h^{3}.
a=\frac{8\left(76-k\right)}{\left(3-2h\right)^{3}}
Divide 76-k by 3.375-6.75h+4.5h^{2}-h^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}