Evaluate
\frac{755}{318}\approx 2.374213836
Factor
\frac{5 \cdot 151}{2 \cdot 3 \cdot 53} = 2\frac{119}{318} = 2.3742138364779874
Share
Copied to clipboard
\begin{array}{l}\phantom{318)}\phantom{1}\\318\overline{)755}\\\end{array}
Use the 1^{st} digit 7 from dividend 755
\begin{array}{l}\phantom{318)}0\phantom{2}\\318\overline{)755}\\\end{array}
Since 7 is less than 318, use the next digit 5 from dividend 755 and add 0 to the quotient
\begin{array}{l}\phantom{318)}0\phantom{3}\\318\overline{)755}\\\end{array}
Use the 2^{nd} digit 5 from dividend 755
\begin{array}{l}\phantom{318)}00\phantom{4}\\318\overline{)755}\\\end{array}
Since 75 is less than 318, use the next digit 5 from dividend 755 and add 0 to the quotient
\begin{array}{l}\phantom{318)}00\phantom{5}\\318\overline{)755}\\\end{array}
Use the 3^{rd} digit 5 from dividend 755
\begin{array}{l}\phantom{318)}002\phantom{6}\\318\overline{)755}\\\phantom{318)}\underline{\phantom{}636\phantom{}}\\\phantom{318)}119\\\end{array}
Find closest multiple of 318 to 755. We see that 2 \times 318 = 636 is the nearest. Now subtract 636 from 755 to get reminder 119. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }119
Since 119 is less than 318, stop the division. The reminder is 119. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}