Evaluate
\frac{750}{17}\approx 44.117647059
Factor
\frac{2 \cdot 3 \cdot 5 ^ {3}}{17} = 44\frac{2}{17} = 44.11764705882353
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)750}\\\end{array}
Use the 1^{st} digit 7 from dividend 750
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)750}\\\end{array}
Since 7 is less than 17, use the next digit 5 from dividend 750 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)750}\\\end{array}
Use the 2^{nd} digit 5 from dividend 750
\begin{array}{l}\phantom{17)}04\phantom{4}\\17\overline{)750}\\\phantom{17)}\underline{\phantom{}68\phantom{9}}\\\phantom{17)9}7\\\end{array}
Find closest multiple of 17 to 75. We see that 4 \times 17 = 68 is the nearest. Now subtract 68 from 75 to get reminder 7. Add 4 to quotient.
\begin{array}{l}\phantom{17)}04\phantom{5}\\17\overline{)750}\\\phantom{17)}\underline{\phantom{}68\phantom{9}}\\\phantom{17)9}70\\\end{array}
Use the 3^{rd} digit 0 from dividend 750
\begin{array}{l}\phantom{17)}044\phantom{6}\\17\overline{)750}\\\phantom{17)}\underline{\phantom{}68\phantom{9}}\\\phantom{17)9}70\\\phantom{17)}\underline{\phantom{9}68\phantom{}}\\\phantom{17)99}2\\\end{array}
Find closest multiple of 17 to 70. We see that 4 \times 17 = 68 is the nearest. Now subtract 68 from 70 to get reminder 2. Add 4 to quotient.
\text{Quotient: }44 \text{Reminder: }2
Since 2 is less than 17, stop the division. The reminder is 2. The topmost line 044 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}