Evaluate
\frac{25}{7}\approx 3.571428571
Factor
\frac{5 ^ {2}}{7} = 3\frac{4}{7} = 3.5714285714285716
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)75}\\\end{array}
Use the 1^{st} digit 7 from dividend 75
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)75}\\\end{array}
Since 7 is less than 21, use the next digit 5 from dividend 75 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)75}\\\end{array}
Use the 2^{nd} digit 5 from dividend 75
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)75}\\\phantom{21)}\underline{\phantom{}63\phantom{}}\\\phantom{21)}12\\\end{array}
Find closest multiple of 21 to 75. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 75 to get reminder 12. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }12
Since 12 is less than 21, stop the division. The reminder is 12. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}